The indirect spin–spin coupling tensor, J, between mercury nuclei in systems containing this element can be of the order of a few kHz and one of the largest measured. We analyzed the physics behind the electronic mechanisms that contribute to the one- and two-bond couplings nJHg–Hg (n = 1, 2). For doing so, we performed calculations for J-couplings in the ionized X22+ and X32+ linear molecules (X = Zn, Cd, Hg) within polarization propagator theory using the random phase approximation and the pure zeroth-order approximation with Dirac–Hartree–Fock and Dirac–Kohn–Sham orbitals, both at four-component and zeroth-order regular approximation levels. We show that the “paramagnetic-like” mechanism contributes more than 99.98% to the total isotropic value of the coupling tensor. By analyzing the molecular and atomic orbitals involved in the total value of the response function, we find that the s-type valence atomic orbitals have a predominant role in the description of the coupling. This fact allows us to develop an effective model from which quantum electrodynamics (QED) effects on J-couplings in the aforementioned ions can be estimated. Those effects were found to be within the interval (0.7; 1.7)% of the total relativistic effect on isotropic one-bond 1J coupling, though ranging those corrections between the interval (−0.4; −0.2)% in Zn-containing ions, to (−1.2; −0.8)% in Hg-containing ions, of the total isotropic coupling constant in the studied systems. The estimated QED corrections show a visible dependence on the nuclear charge Z of each atom X in the form of a power-law proportional to ZX5.

1.
Calculation of NMR and EPR Parameters: Theory and Applications
, edited by
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
(
Wiley-VCH
,
Weinheim
,
2004
).
2.
J.
Vaara
,
Phys. Chem. Chem. Phys.
9
,
5399
(
2007
).
3.
High Resolution NMR Spectroscopy. Understanding Molecules and Their Electronic Structures
, Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, edited by
R. H.
Contreras
(
Elsevier
,
2013
).
4.
Y. Y.
Rusakov
and
L. B.
Krivdin
,
Russ. Chem. Rev.
82
,
99
(
2013
).
5.
L.
Visscher
,
T.
Enevoldsen
,
T.
Saue
,
H. J. Aa.
Jensen
, and
J.
Oddershede
,
J. Comput. Chem.
20
,
1262
(
1999
).
6.
G. A.
Aucar
,
R. H.
Romero
, and
A. F.
Maldonado
,
Int. Rev. Phys. Chem.
29
,
1
(
2010
).
8.
I.
Lindgren
,
S.
Salomonson
, and
B.
Åsén
,
Phys. Rep.
389
,
161
(
2004
).
9.
K. G.
Dyall
,
J. Chem. Phys.
139
,
021103
(
2013
).
10.
I.
Lindgren
and
P.
Indelicato
, “
Unifying many-body perturbation theory with quantum electrodynamics
,” in
Handbook of Relativistic Quantum Chemistry
, edited by
W.
Liu
(
Springer
,
Berlin, Heidelberg
,
2017
), pp.
313
341
.
11.
V. M.
Shabaev
,
I. I.
Tupitsyn
, and
V. A.
Yerokhin
,
Comput. Phys. Commun.
223
,
69
(
2018
).
12.
G. A.
Aucar
,
Phys. Chem. Chem. Phys.
16
,
4420
(
2014
).
13.
G. A.
Aucar
,
A. F.
Maldonado
,
M. D. A.
Montero
, and
T.
Santa Cruz
,
Int. J. Quantum Chem.
119
,
e25722
(
2019
).
14.
C. A.
Giménez
,
K.
Kozioł
, and
G. A.
Aucar
,
Phys. Rev. A: At., Mol., Opt. Phys.
93
,
032504
(
2016
).
15.
V. A.
Yerokhin
,
K.
Pachucki
,
Z.
Harman
, and
C. H.
Keitel
,
Phys. Rev. Lett.
107
,
043004
(
2011
).
16.
V. A.
Yerokhin
,
K.
Pachucki
,
Z.
Harman
, and
C. H.
Keitel
,
Phys. Rev. A: At., Mol., Opt. Phys.
85
,
022512
(
2012
).
17.
J. A.
Lowe
,
C. T.
Chantler
, and
I. P.
Grant
,
Radiat. Phys. Chem.
85
,
118
(
2013
).
18.
K.
Kozioł
,
I. A.
Aucar
, and
G. A.
Aucar
,
J. Chem. Phys.
150
,
184301
(
2019
).
19.
M.
Kubiszewski
,
W.
Makulski
, and
K.
Jackowski
,
J. Mol. Struct.
737
,
7
(
2005
).
20.
K.
Jackowski
,
M.
Jaszuński
, and
M.
Wilczek
,
J. Phys. Chem. A
114
,
2471
(
2010
).
21.
M.
Jaszuński
,
A.
Antušek
,
P.
Garbacz
,
K.
Jackowski
,
W.
Makulski
, and
M.
Wilczek
,
Prog. Nucl. Magn. Reson. Spectrosc.
67
,
49
(
2012
).
22.
B.
Adrjan
,
W.
Makulski
,
K.
Jackowski
,
T. B.
Demissie
,
K.
Ruud
,
A.
Antušek
, and
M.
Jaszuński
,
Phys. Chem. Chem. Phys.
18
,
16483
(
2016
).
23.
S. A.
Blundell
,
K. T.
Cheng
, and
J.
Sapirstein
,
Phys. Rev. A
55
,
1857
(
1997
).
24.
P.
Sunnergren
,
H.
Persson
,
S.
Salomonson
,
S. M.
Schneider
,
I.
Lindgren
, and
G.
Soff
,
Phys. Rev. A
58
,
1055
(
1998
).
25.
S. G.
Karshenboim
and
V. G.
Ivanov
,
Phys. Lett. B
524
,
259
(
2002
).
26.
S.
Boucard
and
P.
Indelicato
,
Eur. Phys. J. D
8
,
59
(
2000
).
27.
J.
Sapirstein
and
K. T.
Cheng
,
Phys. Rev. A
63
,
032506
(
2001
).
28.
J.
Sapirstein
and
K.
Cheng
,
Phys. Rev. A
67
,
022512
(
2003
).
29.
J. S.
Ginges
,
A. V.
Volotka
, and
S.
Fritzsche
,
Phys. Rev. A
96
,
062502
(
2017
); arXiv:1709.07725.
30.
J.
Sapirstein
and
K.
Cheng
,
Phys. Rev. A
74
,
042513
(
2006
).
31.
J.
Sapirstein
,
K.
Cheng
 et al,
Phys. Rev. A
78
,
022515
(
2008
).
32.
P.
Pyykkö
and
L.-B.
Zhao
,
J. Phys. B: At., Mol. Opt. Phys.
36
,
1469
(
2003
).
33.
J.
Autschbach
,
C. D.
Igna
, and
T.
Ziegler
,
J. Am. Chem. Soc.
125
,
4937
(
2003
).
34.
J.
Autschbach
and
M.
Sterzel
,
J. Am. Chem. Soc.
129
,
11093
(
2007
).
35.
G. A.
Aucar
and
J.
Oddershede
,
Int. J. Quantum Chem.
47
,
425
(
1993
).
36.
G. A.
Aucar
,
T.
Saue
,
L.
Visscher
, and
H. J. Aa.
Jensen
,
J. Chem. Phys.
110
,
6208
(
1999
).
37.
T.
Saue
and
H. J. A.
Jensen
,
J. Chem. Phys.
118
,
522
(
2003
).
38.
K.
Fægri
, Jr.
and
T.
Saue
,
J. Chem. Phys.
115
,
2456
(
2001
).
39.
S.
Dubillard
,
J.-B.
Rota
,
T.
Saue
, and
K.
Faegri
,
J. Chem. Phys.
124
,
154307
(
2006
).
40.
T.
Saue
,
R.
Bast
,
A. S. P.
Gomes
,
H. J. Aa.
Jensen
,
L.
Visscher
,
I. A.
Aucar
,
R.
Di Remigio
,
K. G.
Dyall
,
E.
Eliav
,
E.
Faßhauer
,
T.
Fleig
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Helmich-Paris
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
J. K.
Lærdahl
,
M. L.
Vidal
,
M. K.
Nayak
,
M.
Olejniczak
,
J. M. H.
Olsen
,
M.
Pernpointner
,
B.
Senjean
,
A.
Shee
,
A.
Sunaga
, and
J. N. P.
van Stralen
,
J. Chem. Phys.
152
,
204104
(
2020
).
41.
G.
Knizia
,
J. Chem. Theory Comput.
9
,
4834
(
2013
).
42.
P.
Indelicato
and
J.
Desclaux
, MCDFGME, a multiconfiguration Dirac–Fock and General Matrix Elements program (release 2005), http://dirac.spectro.jussieu.fr/mcdf.
43.
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC19,
2019
, written by
A. S. P.
Gomes
,
T.
Saue
,
L.
Visscher
,
H. J. Aa.
Jensen
, and
R.
Bast
, with contributions from
I. A.
Aucar
,
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Heimlich-Paris
,
T.
Helgaker
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
R.
di Remigio
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
B.
Senjean
,
A.
Shee
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
M. L.
Vidal
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
available at , see also http://www.diracprogram.org.
44.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
45.
K. G.
Dyall
,
Theor. Chem. Acc.
117
,
483
(
2007
).
46.
K. G.
Dyall
,
Theor. Chem. Acc.
112
,
403
(
2004
).
47.
C.
van Wüllen
,
Z. Phys. Chem.
224
,
413
(
2010
).
48.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
49.
K.
Gaul
and
R.
Berger
,
J. Chem. Phys.
152
,
044101
(
2020
); arXiv:1907.10432 [physics.chem-ph].
50.
S. A.
Brück
,
N.
Sahu
,
K.
Gaul
, and
R.
Berger
, “
Quasi-relativistic approach to analytical gradients of parity violating potentials
,” arXiv:2102.09897 [physics.chem-ph] (
2021
).
51.
C.
van Wüllen
and
N.
Langermann
,
J. Chem. Phys.
126
,
114106
(
2007
).
52.
C.
Van Wüllen
,
J. Comput. Chem.
23
,
779
(
2002
).
53.
P.
Pyykkö
and
L.
Wiesenfeld
,
Mol. Phys.
43
,
557
(
1981
).
54.
R.
Malleier
,
H.
Kopacka
,
W.
Schuh
,
K.
Wurst
, and
P.
Peringer
,
Chem. Commun.
2001
,
51
.
55.
R. J.
Gillespie
,
P.
Granger
,
K. R.
Morgan
, and
G. J.
Schrobilgen
,
Inorg. Chem.
23
,
887
(
1984
).
56.
R.
Berger
,
N.
Langermann
, and
C.
van Wüllen
,
Phys. Rev. A
71
,
042105
(
2005
).
57.
S.
Nahrwold
and
R.
Berger
,
J. Chem. Phys.
130
,
214101
(
2009
).
58.
K.
Gaul
and
R.
Berger
,
J. Chem. Phys.
147
,
014109
(
2017
).
59.
G. A.
Aucar
,
J. I.
Melo
,
I. A.
Aucar
, and
A. F.
Maldonado
,
Int. J. Quantum Chem.
118
,
e25487
(
2017
).
60.
K.
Jakubowska
and
M.
Pecul
,
Theor. Chem. Acc.
140
,
26
(
2021
).
61.
A.
Viste
,
M.
Hotokka
,
L.
Laaksonen
, and
P.
Pyykkö
,
Chem. Phys.
72
,
225
(
1982
).
62.
M. P.
Ledbetter
,
T.
Theis
,
J. W.
Blanchard
,
H.
Ring
,
P.
Ganssle
,
S.
Appelt
,
B.
Blümich
,
A.
Pines
, and
D.
Budker
,
Phys. Rev. Lett.
107
,
107601
(
2011
).
63.
A.
Wilzewski
,
S.
Afach
,
J. W.
Blanchard
, and
D.
Budker
,
J. Magn. Reson.
284
,
66
(
2017
).

Supplementary Material

You do not currently have access to this content.