Plasmonic gold nanoparticles (AuNPs) can convert laser irradiation into thermal energy for a variety of applications. Although heat transfer through the AuNP–water interface is considered an essential part of the plasmonic heating process, there is a lack of mechanistic understanding of how interface curvature and the heating itself impact interfacial heat transfer. Here, we report atomistic molecular dynamics simulations that investigate heat transfer through nanoscale gold–water interfaces. We simulated four nanoscale gold structures under various applied heat flux values to evaluate how gold–water interface curvature and temperature affect the interfacial heat transfer. We also considered a case in which we artificially reduced wetting at the gold surfaces by tuning the gold–water interactions to determine if such a perturbation alters the curvature and temperature dependence of the gold–water interfacial heat transfer. We first confirmed that interfacial heat transfer is particularly important for small particles (diameter 10 nm). We found that the thermal interface conductance increases linearly with interface curvature regardless of the gold wettability, while it increases nonlinearly with the applied heat flux under normal wetting and remains constant under reduced wetting. Our analysis suggests the curvature dependence of the interface conductance coincides with changes in interfacial water adsorption, while the temperature dependence may arise from temperature-induced shifts in the distribution of water vibrational states. Our study advances the current understanding of interface thermal conductance for a broad range of applications.

1.
G.
Baffou
and
R.
Quidant
, “
Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat
,”
Laser Photonics Rev.
7
,
171
187
(
2013
).
2.
Z.
Qin
and
J. C.
Bischof
, “
Thermophysical and biological responses of gold nanoparticle laser heating
,”
Chem. Soc. Rev.
41
,
1191
1217
(
2012
).
3.
G.
Baffou
,
F.
Cichos
, and
R.
Quidant
, “
Applications and challenges of thermoplasmonics
,”
Nat. Mater.
19
,
946
958
(
2020
).
4.
L. R.
Hirsch
,
R. J.
Stafford
,
J. A.
Bankson
,
S. R.
Sershen
,
B.
Rivera
,
R. E.
Price
,
J. D.
Hazle
,
N. J.
Halas
, and
J. L.
West
, “
Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
13549
13554
(
2003
).
5.
G. S.
Terentyuk
,
G. N.
Maslyakova
,
L. V.
Suleymanova
,
N. G.
Khlebtsov
,
B. N.
Khlebtsov
,
G. G.
Akchurin
,
I. L.
Maksimova
, and
V. V.
Tuchin
, “
Laser-induced tissue hyperthermia mediated by gold nanoparticles: Toward cancer phototherapy
,”
J. Biomed. Opt.
14
,
021016
(
2009
).
6.
G.
Huettmann
,
J.
Serbin
,
B.
Radt
,
B. I.
Lange
, and
R.
Birngruber
, “
Model system for investigating laser-induced subcellular microeffects
,”
Proc. SPIE
4257
,
398
(
2001
).
7.
G.
Huettmann
,
B.
Radt
,
J.
Serbin
, and
R.
Birngruber
, “
Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses
,”
Proc. SPIE
5142
,
88
(
2003
).
8.
C. M.
Pitsillides
,
E. K.
Joe
,
X.
Wei
,
R. R.
Anderson
, and
C. P.
Lin
, “
Selective cell targeting with light-absorbing microparticles and nanoparticles
,”
Biophys. J.
84
,
4023
4032
(
2003
).
9.
P.
Kang
,
Z.
Chen
,
S. O.
Nielsen
,
K.
Hoyt
,
S.
D’Arcy
,
J. J.
Gassensmith
, and
Z.
Qin
, “
Molecular hyperthermia: Spatiotemporal protein unfolding and inactivation by nanosecond plasmonic heating
,”
Small
13
,
1700841
(
2017
).
10.
P.
Kang
,
X.
Li
,
Y.
Liu
,
S. I.
Shiers
,
H.
Xiong
,
M.
Giannotta
,
E.
Dejana
,
T. J.
Price
,
J.
Randrianalisoa
,
S. O.
Nielsen
, and
Z.
Qin
, “
Transient photoinactivation of cell membrane protein activity without genetic modification by molecular hyperthermia
,”
ACS Nano
13
,
12487
12499
(
2019
).
11.
K.
Metwally
,
S.
Mensah
, and
G.
Baffou
, “
Fluence threshold for photothermal bubble generation using plasmonic nanoparticles
,”
J. Phys. Chem. C
119
,
28586
28596
(
2015
).
12.
A.
Carattino
,
M.
Caldarola
, and
M.
Orrit
, “
Gold nanoparticles as absolute nanothermometers
,”
Nano Lett.
18
,
874
880
(
2018
).
13.
D. A.
Hastman
,
J. S.
Melinger
,
G. L.
Aragonés
,
P. D.
Cunningham
,
M.
Chiriboga
,
Z. J.
Salvato
,
T. M.
Salvato
,
C. W.
Brown III
,
D.
Mathur
,
I. L.
Medintz
,
E.
Oh
, and
S. A.
Díaz
, “
Femtosecond laser pulse excitation of DNA-labeled gold nanoparticles: Establishing a quantitative local nanothermometer for biological applications
,”
ACS Nano
14
,
8570
8583
(
2020
).
14.
D.
Boyer
,
P.
Tamarat
,
A.
Maali
,
B.
Lounis
, and
M.
Orrit
, “
Photothermal imaging of nanometer-sized metal particles among scatterers
,”
Science
297
,
1160
1163
(
2002
).
15.
M.
Selmke
,
M.
Braun
, and
F.
Cichos
, “
Photothermal single-particle microscopy: Detection of a nanolens
,”
ACS Nano
6
,
2741
2749
(
2012
).
16.
Y.-S.
Chen
,
W.
Frey
,
S.
Kim
,
P.
Kruizinga
,
K.
Homan
, and
S.
Emelianov
, “
Silica-coated gold nanorods as photoacoustic signal nanoamplifiers
,”
Nano Lett.
11
,
348
354
(
2011
).
17.
X.
Liu
,
M. G.
González
,
R.
Niessner
, and
C.
Haisch
, “
Strong size-dependent photoacoustic effect on gold nanoparticles: A sensitive tool for aggregation-based colorimetric protein detection
,”
Anal. Methods
4
,
309
311
(
2012
).
18.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
, “
Nanoscale thermal transport
,”
J. Appl. Phys.
93
,
793
818
(
2003
).
19.
T.
Luo
and
G.
Chen
, “
Nanoscale heat transfer-from computation to experiment
,”
Phys. Chem. Chem. Phys.
15
,
3389
3412
(
2013
).
20.
O. M.
Wilson
,
X.
Hu
,
D. G.
Cahill
, and
P. V.
Braun
, “
Colloidal metal particles as probes of nanoscale thermal transport in fluids
,”
Phys. Rev. B
66
,
224301
(
2002
).
21.
A.
Plech
,
V.
Kotaidis
,
S.
Grésillon
,
C.
Dahmen
, and
G.
von Plessen
, “
Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering
,”
Phys. Rev. B
70
,
195423
(
2004
).
22.
Z.
Ge
,
D. G.
Cahill
, and
P. V.
Braun
, “
AuPd metal nanoparticles as probes of nanoscale thermal transport in aqueous solution
,”
J. Phys. Chem. B
108
,
18870
18875
(
2004
).
23.
Z.
Ge
,
D. G.
Cahill
, and
P. V.
Braun
, “
Thermal conductance of hydrophilic and hydrophobic interfaces
,”
Phys. Rev. Lett.
96
,
186101
(
2006
).
24.
A. J.
Schmidt
,
J. D.
Alper
,
M.
Chiesa
,
G.
Chen
,
S. K.
Das
, and
K.
Hamad-Schifferli
, “
Probing the gold nanorod–ligand–solvent interface by plasmonic absorption and thermal decay
,”
J. Phys. Chem. C
112
,
13320
13323
(
2008
).
25.
J.
Alper
and
K.
Hamad-Schifferli
, “
Effect of ligands on thermal dissipation from gold nanorods
,”
Langmuir
26
,
3786
3789
(
2010
).
26.
T.
Stoll
,
P.
Maioli
,
A.
Crut
,
S.
Rodal-Cedeira
,
I.
Pastoriza-Santos
,
F.
Vallée
, and
N.
Del Fatti
, “
Time-resolved investigations of the cooling dynamics of metal nanoparticles: Impact of environment
,”
J. Phys. Chem. C
119
,
12757
12764
(
2015
).
27.
A. S.
Tascini
,
J.
Armstrong
,
E.
Chiavazzo
,
M.
Fasano
,
P.
Asinari
, and
F.
Bresme
, “
Thermal transport across nanoparticle–fluid interfaces: The interplay of interfacial curvature and nanoparticle–fluid interactions
,”
Phys. Chem. Chem. Phys.
19
,
3244
3253
(
2017
).
28.
A. R.
Nair
and
S. P.
Sathian
, “
Heat transfer across nanoparticle–liquid interfaces
,”
J. Heat Transfer
138
,
112402
(
2016
).
29.
A.
Lervik
,
F.
Bresme
, and
S.
Kjelstrup
, “
Heat transfer in soft nanoscale interfaces: The influence of interface curvature
,”
Soft Matter
5
,
2407
2414
(
2009
).
30.
K. M.
Stocker
,
S. M.
Neidhart
, and
J. D.
Gezelter
, “
Interfacial thermal conductance of thiolate-protected gold nanospheres
,”
J. Appl. Phys.
119
,
025106
(
2016
).
31.
S. M.
Neidhart
and
J. D.
Gezelter
, “
Thermal transport is influenced by nanoparticle morphology: A molecular dynamics study
,”
J. Phys. Chem. C
122
,
1430
1436
(
2018
).
32.
M.
Hu
and
G. V.
Hartland
, “
Heat dissipation for Au particles in aqueous solution: Relaxation time versus size
,”
J. Phys. Chem. B
106
,
7029
7033
(
2002
).
33.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
34.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
35.
S. M.
Foiles
,
M. I.
Baskes
, and
M. S.
Daw
, “
Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys
,”
Phys. Rev. B
33
,
7983
7991
(
1986
).
36.
J.
López-Lemus
,
G. A.
Chapela
, and
J.
Alejandre
, “
Effect of flexibility on surface tension and coexisting densities of water
,”
J. Chem. Phys.
128
,
174703
(
2008
).
37.
S.
Merabia
,
S.
Shenogin
,
L.
Joly
,
P.
Keblinski
, and
J.-L.
Barrat
, “
Heat transfer from nanoparticles: A corresponding state analysis
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
15113
(
2009
).
38.
Y.
Dou
,
L. V.
Zhigilei
,
N.
Winograd
, and
B. J.
Garrison
, “
Explosive boiling of water films adjacent to heated surfaces: A microscopic description
,”
J. Phys. Chem. A
105
,
2748
2755
(
2001
).
39.
P.
Schravendijk
,
N.
van der Vegt
,
L.
Delle Site
, and
K.
Kremer
, “
Dual-scale modeling of benzene adsorption onto Ni(111) and Au(111) surfaces in explicit water
,”
ChemPhysChem
6
,
1866
1871
(
2005
).
40.
K. A.
Tay
and
F.
Bresme
, “
Wetting properties of passivated metal nanocrystals at liquid–vapor interfaces: A computer simulation study
,”
J. Am. Chem. Soc.
128
,
14166
14175
(
2006
).
41.
A. V.
Verde
,
J. M.
Acres
, and
J. K.
Maranas
, “
Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations
,”
Biomacromolecules
10
,
2118
2128
(
2009
).
42.
X.
Chen
,
A.
Munjiza
,
K.
Zhang
, and
D.
Wen
, “
Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool
,”
J. Phys. Chem. C
118
,
1285
1293
(
2014
).
43.
F.
Iori
and
S.
Corni
, “
Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces
,”
J. Comput. Chem.
29
,
1656
1666
(
2008
).
44.
F.
Iori
,
R.
Di Felice
,
E.
Molinari
, and
S.
Corni
, “
GolP: An atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water
,”
J. Comput. Chem.
30
,
1465
1476
(
2008
).
45.
H.
Bhattarai
,
K. E.
Newman
, and
J. D.
Gezelter
, “
The role of polarizability in the interfacial thermal conductance at the gold–water interface
,”
J. Chem. Phys.
153
,
204703
(
2020
).
46.
Y.
Wang
and
P.
Keblinski
, “
Role of wetting and nanoscale roughness on thermal conductance at liquid-solid interface
,”
Appl. Phys. Lett.
99
,
073112
(
2011
).
47.
R.
Hockney
and
J.
Eastwood
, “
The particle-mesh force calculation
,” in
Computer Simulation Using Particles
(
CRC Press
,
1989
), pp.
120
165
.
48.
T.
Schneider
and
E.
Stoll
, “
Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions
,”
Phys. Rev. B
17
,
1302
(
1978
).
49.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
, “
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
,
2319
2327
(
2011
).
50.
R. J.
Gowers
,
M.
Linke
,
J.
Barnoud
,
T. J. E.
Reddy
,
M. N.
Melo
,
S. L.
Seyler
,
J.
Domański
,
D. L.
Dotson
,
S.
Buchoux
,
I. M.
Kenney
, and
O.
Beckstein
, “
MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations
,” in
Proceedings of the 15th Python in Science Conference
, edited by
S.
Benthall
and
S.
Rostrup
(
SciPy
,
2016
), pp.
98
105
.
51.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
, and
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
52.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
53.
J. D.
Hunter
, “
Matplotlib: A 2D graphics environment
,”
Comput. Sci. Eng.
9
,
90
95
(
2007
).
54.
M. L.
Waskom
, “
seaborn: Statistical data visualization
,”
J. Open Source Software
6
,
3021
(
2021
).
55.
S. K.
Lam
,
A.
Pitrou
, and
S.
Seibert
, “
Numba: A LLVM-based Python JIT compiler
,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15
(
Association for Computing Machinery
,
New York
,
2015
).
56.
W.
McKinney
, “
Data structures for statistical computing in Python
,” in
Proceedings of the 9th Python in Science Conference
(
SciPy
,
2010
), pp.
56
61
.
57.
T.
Kluyver
,
B.
Ragan-Kelley
,
F.
Pérez
,
B.
Granger
,
M.
Bussonnier
,
J.
Frederic
,
K.
Kelley
,
J.
Hamrick
,
J.
Grout
,
S.
Corlay
,
P.
Ivanov
,
D.
Avila
,
S.
Abdalla
, and
C.
Willing
, “
Jupyter notebooks—A publishing format for reproducible computational workflows
,” in
Positioning and Power in Academic Publishing: Players, Agents and Agendas
, edited by
F.
Loizides
and
B.
Schmidt
(
IOS Press
,
2016
), pp.
87
90
.
58.
J.
Stone
, “
An efficient library for parallel ray tracing and animation
,” M.S. thesis,
Computer Science Department, University of Missouri-Rolla
,
1998
.
59.
A.
Grossfield
and
D. M.
Zuckerman
, “
Quantifying uncertainty and sampling quality in biomolecular simulations
,”
Annu. Rep. Comput. Chem.
5
,
23
48
(
2009
).
60.
J. D.
Olarte-Plata
,
J.
Gabriel
,
P.
Albella
, and
F.
Bresme
, “
Spatial control of heat flow at the nanoscale using Janus particles
,”
ACS Nano
16
,
694
709
(
2022
).
61.
M.
Jiang
,
J. D.
Olarte-Plata
, and
F.
Bresme
, “
Heterogeneous thermal conductance of nanoparticle–fluid interfaces: An atomistic nodal approach
,”
J. Chem. Phys.
156
,
044701
(
2022
).
62.
C.-W.
Nan
,
R.
Birringer
,
D. R.
Clarke
, and
H.
Gleiter
, “
Effective thermal conductivity of particulate composites with interfacial thermal resistance
,”
J. Appl. Phys.
81
,
6692
6699
(
1997
).
63.
C.-W.
Nan
and
R.
Birringer
, “
Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model
,”
Phys. Rev. B
57
,
8264
8268
(
1998
).
64.
M. L. V.
Ramires
,
C. A.
Nieto de Castro
,
Y.
Nagasaka
,
A.
Nagashima
,
M. J.
Assael
, and
W. A.
Wakeham
, “
Standard reference data for the thermal conductivity of water
,”
J. Phys. Chem. Ref. Data
24
,
1377
1381
(
1995
).
65.
A.
Plech
,
S.
Ibrahimkutty
,
S.
Reich
, and
G.
Newby
, “
Thermal dynamics of pulsed-laser excited gold nanorods in suspension
,”
Nanoscale
9
,
17284
17292
(
2017
).
66.
H.-K.
Lyeo
and
D. G.
Cahill
, “
Thermal conductance of interfaces between highly dissimilar materials
,”
Phys. Rev. B
73
,
144301
(
2006
).
67.
P. E.
Hopkins
,
P. M.
Norris
, and
R. J.
Stevens
, “
Influence of inelastic scattering at metal-dielectric interfaces
,”
J. Heat Transfer
130
,
022401
(
2008
).
68.
S.
Murad
and
I. K.
Puri
, “
Thermal transport across nanoscale solid-fluid interfaces
,”
Appl. Phys. Lett.
92
,
133105
(
2008
).
69.
S.
Murad
and
I. K.
Puri
, “
Molecular simulation of thermal transport across hydrophilic interfaces
,”
Chem. Phys. Lett.
467
,
110
113
(
2008
).
70.
G.
Balasubramanian
,
S.
Banerjee
, and
I. K.
Puri
, “
Unsteady nanoscale thermal transport across a solid-fluid interface
,”
J. Appl. Phys.
104
,
064306
(
2008
).
71.
B. H.
Kim
,
A.
Beskok
, and
T.
Cagin
, “
Molecular dynamics simulations of thermal resistance at the liquid-solid interface
,”
J. Chem. Phys.
129
,
174701
(
2008
).
72.
Z.
Shi
,
M.
Barisik
, and
A.
Beskok
, “
Molecular dynamics modeling of thermal resistance at argon-graphite and argon-silver interfaces
,”
Int. J. Therm. Sci.
59
,
29
37
(
2012
).
73.
M.
Hu
,
D.
Poulikakos
,
C. P.
Grigoropoulos
, and
H.
Pan
, “
Recrystallization of picosecond laser-melted ZnO nanoparticles in a liquid: A molecular dynamics study
,”
J. Chem. Phys.
132
,
164504
(
2010
).
74.
N.
Shenogina
,
R.
Godawat
,
P.
Keblinski
, and
S.
Garde
, “
How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces
,”
Phys. Rev. Lett.
102
,
156101
(
2009
).
75.
S.-W.
Hung
,
G.
Kikugawa
, and
J.
Shiomi
, “
Mechanism of temperature dependent thermal transport across the interface between self-assembled monolayer and water
,”
J. Phys. Chem. C
120
,
26678
26685
(
2016
).
76.
B.
Lee
and
F. M.
Richards
, “
The interpretation of protein structures: Estimation of static accessibility
,”
J. Mol. Biol.
55
,
379
400
(
1971
).
77.
A.
Shrake
and
J. A.
Rupley
, “
Environment and exposure to solvent of protein atoms. Lysozyme and insulin
,”
J. Mol. Biol.
79
,
351
371
(
1973
).
78.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
,
605
668
(
1989
).
79.
P.
Reddy
,
K.
Castelino
, and
A.
Majumdar
, “
Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion
,”
Appl. Phys. Lett.
87
,
211908
(
2005
).
80.
J. W.
Lynn
,
H. G.
Smith
, and
R. M.
Nicklow
, “
Lattice dynamics of gold
,”
Phys. Rev. B
8
,
3493
3499
(
1973
).
81.
R.
Carles
,
P.
Benzo
,
B.
Pécassou
, and
C.
Bonafos
, “
Vibrational density of states and thermodynamics at the nanoscale: The 3D-2D transition in gold nanostructures
,”
Sci. Rep.
6
,
39164
(
2016
).
82.
A.
Bhattacharya
, “
On a measure of divergence between two multinomial populations
,”
Indian J. Stat.
7
,
401
406
(
1946
).
83.
K. M.
Stocker
and
J. D.
Gezelter
, “
Simulations of heat conduction at thiolate-capped gold surfaces: The role of chain length and solvent penetration
,”
J. Phys. Chem. C
117
,
7605
7612
(
2013
).
84.
S.
Salassi
,
A.
Cardellini
,
P.
Asinari
,
R.
Ferrando
, and
G.
Rossi
, “
Water dynamics affects thermal transport at the surface of hydrophobic and hydrophilic irradiated nanoparticles
,”
Nanoscale Adv.
2
,
3181
3190
(
2020
).
85.
F.
Font
and
T. G.
Myers
, “
Spherically symmetric nanoparticle melting with a variable phase change temperature
,”
J. Nanopart. Res.
15
,
2086
(
2013
).

Supplementary Material

You do not currently have access to this content.