To explore the curvature dependence of solid–fluid interfacial thermodynamics, we calculate, using Grand Canonical Monte Carlo simulation, the surface free energy for a 2d hard-disk fluid confined in a circular hard container of radius R as a function of the bulk packing fraction η and wall curvature C̄=1/R. (The curvature is negative because the surface is concave.) Combining this with our previous data [Martin et al., J. Phys. Chem. B 124, 7938–7947 (2020)] for the positive curvature case (a hard-disk fluid at a circular wall, C̄=+1/R), we obtain a complete picture of surface thermodynamics in this system over the full range of positive and negative wall curvatures. Our results show that γ is linear in C̄ with a slope that is the same for both positive and negative wall curvatures, with deviations seen only at high negative curvatures (strong confinement) and high density. This observation indicates that the surface thermodynamics of this system is consistent with the predictions of so-called morphometric thermodynamics at both positive and negative curvatures. In addition, we show that classical density functional theory and a generalized scaled particle theory can be constructed that give excellent agreement with the simulation data over most of the range of curvatures and densities. For extremely high curvatures, where only one or two disks can occupy the container at maximum packing, it is possible to calculate γ exactly. In this limit, the simulations and density functional theory calculations are in remarkable agreement with the exact results.

1.
K.
Lum
,
D.
Chandler
, and
J. D.
Weeks
, “
Hydrophobicity at small and large length scales
,”
J. Phys. Chem.
103
,
4570
4577
(
1999
).
2.
J. R.
Henderson
, “
Solvation of a solvophobic sphere
,”
J. Chem. Phys.
116
,
5039
5045
(
2002
).
3.
Z.
Jin
,
J.
Kim
, and
J.
Wu
, “
Shape effect on nanoparticle solvation: A comparison of morphometric thermodynamics and microscopic theories
,”
Langmuir
28
,
6997
7006
(
2012
).
4.
J. W.
Gibbs
,
The Collected Works of J. Willard Gibbs
, Thermodynamics Vol. I (
Yale University Press
,
New Haven
,
1948
).
5.
R. C.
Tolman
, “
The effect of droplet size on surface tension
,”
J. Chem. Phys.
17
,
333
337
(
1949
).
6.
W.
Helfrich
, “
Elastic properties of lipid bilayers: Theory and possible experiments
,”
Z. Naturforsch., C: J. Biosci.
28
,
693
703
(
1973
).
7.
C. N.
Likos
,
K. R.
Mecke
, and
H.
Wagner
, “
Statistical morphology of random interfaces in microemulsions
,”
J. Chem. Phys.
102
,
9350
9361
(
1995
).
8.
P. M.
König
,
R.
Roth
, and
K. R.
Mecke
, “
Morphological thermodynamics of fluids: Shape dependence of free energies
,”
Phys. Rev. Lett.
93
,
160601
(
2004
).
9.
H.
Hansen-Goos
,
R.
Roth
,
K.
Mecke
, and
S.
Dietrich
, “
Solvation of proteins: Linking thermodynamics to geometry
,”
Phys. Rev. Lett.
99
,
128101
(
2007
).
10.
H.
Hadwiger
,
Vorlesungen Über Inhalt, Oberfläche und Isoperimetrie
(
Springer
,
Berlin, Heidelberg
,
1957
).
11.
B. B.
Laird
,
A.
Hunter
, and
R. L.
Davidchack
, “
Interfacial free energy of a hard-sphere fluid in contact with curved hard surfaces
,”
Phys. Rev. E
86
,
060602
(
2012
).
12.
R. L.
Davidchack
and
B. B.
Laird
, “
Surface free energy of a hard-sphere fluid at curved walls: Deviations from morphometric thermodynamics
,”
J. Chem. Phys.
149
,
174706
(
2018
).
13.
R.
Evans
, “
The nature of liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids
,”
Adv. Phys.
28
,
143
(
1979
).
14.
P.
Bryk
,
R.
Roth
,
K. R.
Mecke
, and
S.
Dietrich
, “
Hard-sphere fluids in contact with curved substrates
,”
Phys. Rev. E
68
,
031602
(
2003
).
15.
S. C.
Martin
,
H.
Hansen-Goos
, and
B. B.
Laird
, “
Surface free energy of a hard-disk fluid at curved hard walls: Theory and simulation
,”
J. Phys. Chem. B
124
,
7938
7947
(
2020
).
16.
C. E.
Sitta
,
F.
Smallenburg
,
R.
Wittkowski
, and
H.
Löwen
, “
Hard rectangles near curved walls: Tuning the sign of the Tolman length
,”
J. Chem. Phys.
145
,
204508
(
2016
).
17.
S.-C.
Kim
,
Z. T.
Németh
,
M.
Heni
, and
H.
Löwen
, “
Hard-disks in circular cavities: Density functional theory versus simulation
,”
Mol. Phys.
99
,
1875
1881
(
2001
).
18.
I.
Urrutia
, “
Two hard spheres in a pore: Exact statistical mechanics for different shaped cavities
,”
J. Chem. Phys.
133
,
104503
(
2010
).
19.
J.
Kolafa
and
M.
Rottner
, “
Simulation-based equation of state of the hard disk fluid and prediction of higher-order virial coefficients
,”
Mol. Phys.
104
,
3435
3441
(
2006
).
20.
J. A.
Anderson
,
M.
Eric Irrgang
, and
S. C.
Glotzer
, “
Scalable Metropolis Monte Carlo for simulation of hard shapes
,”
Comput. Phys. Commun.
204
,
21
30
(
2016
).
21.
J. A.
Anderson
,
J.
Glaser
, and
S. C.
Glotzer
, “
HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations
,”
Comput. Mater. Sci.
173
,
109363
(
2020
).
22.
A.
Jaster
, “
The hexatic phase of the two-dimensional hard disk system
,”
Phys. Lett. A
330
,
120
125
(
2004
).
23.
E. P.
Bernard
and
W.
Krauth
, “
Two-step melting in two dimensions: First-order liquid-hexatic transition
,”
Phys. Rev. Lett.
107
,
155704
(
2011
).
24.
M.
Engel
,
J. A.
Anderson
,
S. C.
Glotzer
,
M.
Isobe
,
E. P.
Bernard
, and
W.
Krauth
, “
Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods
,”
Phys. Rev.E
87
,
042134
(
2013
).
25.
S. C.
Martin
,
B. B.
Laird
,
R.
Roth
, and
H.
Hansen-Goos
, “
Thermodynamics of the hard-disk fluid at a planar hard wall: Generalized scaled-particle theory and Monte Carlo simulation
,”
J. Chem. Phys.
149
,
084701
(
2018
).
26.
R.
Roth
,
K.
Mecke
, and
M.
Oettel
, “
Communication: Fundamental measure theory for hard disks: Fluid and solid
,”
J. Chem. Phys.
136
,
081101
(
2012
).
27.
R.
Roth
, “
Fundamental measure theory of hard-sphere mixtures: A review
,”
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
28.
D.
Stopper
and
R.
Roth
, “
Massively parallel GPU-accelerated minimization of classical density functional theory
,”
J. Chem. Phys.
147
,
064508
(
2017
).
29.
A. J. S.
Hamilton
, “
Uncorrelated modes of the non-linear power spectrum
,”
Mon. Not. R. Astron. Soc.
312
,
257
284
(
2000
).
30.
V.
Botan
,
F.
Pesth
,
T.
Schilling
, and
M.
Oettel
, “
Hard sphere fluids in annular wedges: Density distributions and depletion potentials
,”
Phys. Rev. E
79
,
061402
(
2009
).
31.
A.
Mulero
,
I.
Cachadiña
, and
J. R.
Solana
, “
The equation of state of the hard-disk fluid revisited
,”
Mol. Phys.
107
,
1457
1465
(
2009
).
32.
A.
Reindl
,
M.
Bier
, and
S.
Dietrich
, “
Implications of interface conventions for morphometric thermodynamics
,”
Phys. Rev. E
91
,
022406
(
2015
).
33.
I.
Urrutia
, “
Two hard spheres in a spherical pore: Exact analytic results in two and three dimensions
,”
J. Stat. Phys.
131
,
597
611
(
2008
).

Supplementary Material

You do not currently have access to this content.