Modeling and understanding properties of materials from first principles require knowledge of the underlying atomistic structure. This entails knowing the individual chemical identity and position of all atoms involved. Obtaining such information for macro-molecules, nano-particles, and clusters and for the surface, interface, and bulk phases of amorphous and solid materials represents a difficult high-dimensional global optimization problem. The rise of machine learning techniques in materials science has, however, led to many compelling developments that may speed up structure searches. The complexity of such new methods has prompted a need for an efficient way of assembling them into global optimization algorithms that can be experimented with. In this paper, we introduce the Atomistic Global Optimization X (AGOX) framework and code as a customizable approach that enables efficient building and testing of global optimization algorithms. A modular way of expressing global optimization algorithms is described, and modern programming practices are used to enable that modularity in the freely available AGOX Python package. A number of examples of global optimization approaches are implemented and analyzed. This ranges from random search and basin-hopping to machine learning aided approaches with on-the-fly learnt surrogate energy landscapes. The methods are applied to problems ranging from supported clusters over surface reconstructions to large carbon clusters and metal-nitride clusters incorporated into graphene sheets.

1.
J.
Greeley
,
T. F.
Jaramillo
,
J.
Bonde
,
I.
Chorkendorff
, and
J. K.
Nørskov
,
Nat. Mater.
5
,
909
(
2006
).
2.
C. J.
Pickard
and
R. J.
Needs
,
Phys. Rev. Lett.
97
,
045504
(
2006
).
3.
Z. A.
Piazza
,
H.-S.
Hu
,
W.-L.
Li
,
Y.-F.
Zhao
,
J.
Li
, and
L.-S.
Wang
,
Nat. Commun.
5
,
3113
(
2014
).
4.
A.
Jain
,
Y.
Shin
, and
K. A.
Persson
,
Nat. Rev. Mater.
1
,
15004
(
2016
).
5.
A. R.
Oganov
,
C. J.
Pickard
,
Q.
Zhu
, and
R. J.
Needs
,
Nat. Rev. Mater.
4
,
331
(
2019
).
6.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
,
Science
220
,
671
(
1983
).
7.
D. J.
Wales
and
J. P. K.
Doye
,
J. Chem. Phys. A
101
,
5111
(
1997
).
8.
S.
Goedecker
,
J. Chem. Phys.
120
,
9911
(
2004
).
9.
D. M.
Deaven
and
K. M.
Ho
,
Phys. Rev. Lett.
75
,
288
(
1995
).
10.
R. L.
Johnston
,
Dalton Trans.
22
,
4193
(
2003
).
11.
A. R.
Oganov
and
C. W.
Glass
,
J. Chem. Phys.
124
,
244704
(
2006
).
12.
S. Q.
Wu
,
M.
Ji
,
C. Z.
Wang
,
M. C.
Nguyen
,
X.
Zhao
,
K.
Umemoto
,
R. M.
Wentzcovitch
, and
K. M.
Ho
,
J. Phys.: Condens. Matter
26
,
035402
(
2013
).
13.
L. B.
Vilhelmsen
and
B.
Hammer
,
J. Chem. Phys.
141
,
044711
(
2014
).
14.
J.
Roberts
,
J. R. S.
Bursten
, and
C.
Risko
,
Chem. Mater.
33
,
6589
(
2021
).
15.
C. J.
Pickard
and
R. J.
Needs
,
J. Phys.: Condens. Matter
23
,
053201
(
2011
).
16.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
17.
J.
Lv
,
Y.
Wang
,
L.
Zhu
, and
Y.
Ma
,
J. Chem. Phys.
137
,
084104
(
2012
).
18.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
19.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
20.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
21.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
22.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
23.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
,
J. Phys. Chem.
6
,
2326
(
2015
).
24.
F. A.
Faber
,
A. S.
Christensen
,
B.
Huang
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
148
,
241717
(
2018
).
25.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
,
Chem. Sci.
8
,
3192
(
2017
).
26.
V. L.
Deringer
and
G.
Csányi
,
Phys. Rev. B
95
,
094203
(
2017
).
27.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Phys.
148
,
241722
(
2018
).
28.
N.
Lubbers
,
J. S.
Smith
, and
K.
Barros
,
J. Chem. Phys.
148
,
241715
(
2018
).
29.
V. L.
Deringer
,
A. P.
Bartók
,
N.
Bernstein
,
D. M.
Wilkins
,
M.
Ceriotti
, and
G.
Csányi
, “
Gaussian process regression for materials and molecules
,”
Chem. Rev.
121
(
16
),
10073
10141
(
2021
).
30.
L.
Li
,
H.
Li
,
I. D.
Seymour
,
L.
Koziol
, and
G.
Henkelman
,
J. Chem. Phys.
152
,
224102
(
2020
).
31.
V.
Zaverkin
,
D.
Holzmüller
,
I.
Steinwart
, and
J.
Kästner
,
J. Chem. Theory Comput.
17
,
6658
(
2021
).
32.
J.
Timmermann
,
Y.
Lee
,
C. G.
Staacke
,
J. T.
Margraf
,
C.
Scheurer
, and
K.
Reuter
,
J. Chem. Phys.
155
,
244107
(
2021
).
33.
J.
Xu
,
X.-M.
Cao
, and
P.
Hu
,
J. Chem. Theory Comput.
17
,
4465
(
2021
).
34.
Z.
Li
,
J. R.
Kermode
, and
A.
De Vita
,
Phys. Rev. Lett.
114
,
096405
(
2015
).
35.
M.
Gastegger
,
J.
Behler
, and
P.
Marquetand
,
Chem. Sci.
8
,
6924
(
2017
).
36.
V. L.
Deringer
,
M. A.
Caro
,
R.
Jana
,
A.
Aarva
,
S. R.
Elliott
,
T.
Laurila
,
G.
Csányi
, and
L.
Pastewka
,
Chem. Mater.
30
,
7438
(
2018
).
37.
V. L.
Deringer
,
N.
Bernstein
,
A. P.
Bartók
,
M. J.
Cliffe
,
R. N.
Kerber
,
L. E.
Marbella
,
C. P.
Grey
,
S. R.
Elliott
, and
G.
Csányi
,
J. Phys. Chem. Lett.
9
,
2879
(
2018
).
38.
R.
Jinnouchi
,
J.
Lahnsteiner
,
F.
Karsai
,
G.
Kresse
, and
M.
Bokdam
,
Phys. Rev. Lett.
122
,
225701
(
2019
).
39.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
,
Annu. Rev. Phys. Chem.
71
,
361
(
2020
).
40.
J. S.
Lim
,
J.
Vandermause
,
M. A.
van Spronsen
,
A.
Musaelian
,
Y.
Xie
,
L.
Sun
,
C. R.
O’Connor
,
T.
Egle
,
N.
Molinari
,
J.
Florian
,
K.
Duanmu
,
R. J.
Madix
,
P.
Sautet
,
C. M.
Friend
, and
B.
Kozinsky
,
J. Am. Chem. Soc.
142
,
15907
(
2020
).
41.
L.
Böselt
,
M.
Thürlemann
, and
S.
Riniker
,
J. Chem. Theory Comput.
17
,
2641
(
2021
).
42.
R.
Ouyang
,
Y.
Xie
, and
D.-e.
Jiang
,
Nanoscale
7
,
14817
(
2015
).
43.
T. K.
Patra
,
V.
Meenakshisundaram
,
J.-H.
Hung
, and
D. S.
Simmons
,
ACS Comb. Sci.
19
,
96
(
2017
).
44.
H.
Zhai
and
A. N.
Alexandrova
,
J. Chem. Theory Comput.
12
,
6213
(
2016
).
45.
S.
Jindal
,
S.
Chiriki
, and
S. S.
Bulusu
,
J. Chem. Phys.
146
,
204301
(
2017
).
46.
V. L.
Deringer
,
D. M.
Proserpio
,
G.
Csányi
, and
C. J.
Pickard
,
Faraday Discuss.
211
,
45
(
2018
).
47.
A.
Denzel
and
J.
Kästner
,
J. Chem. Phys.
148
,
094114
(
2018
).
48.
E.
Garijo del Río
,
J. J.
Mortensen
, and
K. W.
Jacobsen
,
Phys. Rev. B
100
,
104103
(
2019
).
49.
G.
Schmitz
and
O.
Christiansen
,
J. Chem. Phys.
148
,
241704
(
2018
).
50.
Q.
Tong
,
L.
Xue
,
J.
Lv
,
Y.
Wang
, and
Y.
Ma
,
Faraday Discuss.
211
,
31
(
2018
).
51.
E. L.
Kolsbjerg
,
A. A.
Peterson
, and
B.
Hammer
,
Phys. Rev. B
97
,
195424
(
2018
).
52.
T. L.
Jacobsen
,
M. S.
Jørgensen
, and
B.
Hammer
,
Phys. Rev. Lett.
120
,
026102
(
2018
).
53.
M.
Todorović
,
M. U.
Gutmann
,
J.
Corander
, and
P.
Rinke
,
Npj Comput. Mater.
5
,
35
(
2019
).
54.
P. C.
Jennings
,
S.
Lysgaard
,
J. S.
Hummelshøj
,
T.
Vegge
, and
T.
Bligaard
,
Npj Comput. Mater.
5
,
46
(
2019
).
55.
E. V.
Podryabinkin
,
E. V.
Tikhonov
,
A. V.
Shapeev
, and
A. R.
Oganov
,
Phys. Rev. B
99
,
064114
(
2019
).
56.
M. L.
Palecio
and
J.
Behler
,
J. Chem. Phys.
153
,
054704
(
2020
).
57.
M. K.
Bisbo
and
B.
Hammer
,
Phys. Rev. Lett.
124
,
086102
(
2020
).
58.
S.
Kaappa
,
E. G.
del Río
, and
K. W.
Jacobsen
,
Phys. Rev. B
103
,
174114
(
2021
).
59.
M.
Arrigoni
and
G. K. H.
Madsen
,
npj Comput. Mater.
7
,
71
(
2021
).
60.
Y.
Yang
,
O. A.
Jiménez-Negrón
, and
J. R.
Kitchin
,
J. Chem. Phys.
154
,
234704
(
2021
).
61.
V.
Sumaria
and
P.
Sautet
,
Chem. Sci.
12
,
15543
(
2021
).
62.
E.
Musa
,
F.
Doherty
, and
B. R.
Goldsmith
,
Curr. Opin. Chem. Eng.
35
,
100771
(
2022
).
63.
M. S.
Jørgensen
,
M. N.
Groves
, and
B.
Hammer
,
J. Chem. Theory Comput.
13
(
3
),
1486
1493
(
2017
).
64.
S. A.
Meldgaard
,
E. L.
Kolsbjerg
, and
B.
Hammer
,
J. Chem. Phys.
149
,
134104
(
2018
).
65.
M. S.
Jørgensen
,
U. F.
Larsen
,
K. W.
Jacobsen
, and
B.
Hammer
,
J. Chem. Phys. A
122
,
1504
(
2018
).
66.
K. H.
Sørensen
,
M. S.
Jørgensen
,
A.
Bruix
, and
B.
Hammer
,
J. Chem. Phys.
148
,
241734
(
2018
).
67.
M. S.
Jørgensen
,
H. L.
Mortensen
,
S. A.
Meldgaard
,
E. L.
Kolsbjerg
,
T. L.
Jacobsen
,
K. H.
Sørensen
, and
B.
Hammer
,
J. Chem. Phys.
151
,
054111
(
2019
).
68.
C. J.
Pickard
,
Phys. Rev. B
99
,
054102
(
2019
).
69.
S.
Chiriki
,
M.-P. V.
Christiansen
, and
B.
Hammer
,
Phys. Rev. B
100
,
235436
(
2019
).
70.
Z.
Zhou
,
S.
Kearnes
,
L.
Li
,
R. N.
Zare
, and
P.
Riley
,
Sci. Rep.
9
,
10752
(
2019
).
71.
S. A.
Meldgaard
,
H. L.
Mortensen
,
M. S.
Jørgensen
, and
B.
Hammer
,
J. Phys.: Condens. Matter
32
,
404005
(
2020
).
72.
G. N. C.
Simm
,
R.
Pinsler
, and
J. M.
Hernández-Lobato
, “
Reinforcement learning for molecular design guided by quantum mechanics
,” in
International Conference on Machine Learning, 2020
,
2020
, arXiv:2002.07717.
73.
G. N. C.
Simm
,
R.
Pinsler
,
G.
Csányi
, and
J. M.
Hernández-Lobato
, “
Symmetry-aware actor-critic for 3D molecular design
,” in
International Conference on Learning Representations 2021
,
2020
, arXiv:2011.12747.
74.
S.
Kaappa
,
C.
Larsen
, and
K. W.
Jacobsen
,
Phys. Rev. Lett.
127
,
166001
(
2021
).
75.
A.
Hjorth Larsen
,
J.
Jørgen Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P.
Bjerre Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E.
Leonhard Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J.
Bergmann Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
,
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
76.
D. A.
Kofke
,
J. Chem. Phys.
117
,
6911
(
2002
).
77.
L. R.
Merte
,
M. K.
Bisbo
,
I.
Sokolović
,
M.
Setvín
,
B.
Hagman
,
M.
Shipilin
,
M.
Schmid
,
U.
Diebold
,
E.
Lundgren
, and
B.
Hammer
,
Angew. Chem., Int. Ed.
61
,
e202204244
(
2022
).
78.
E.
Gamma
,
R.
Helm
,
J.
Vlissides
, and
R.
Johnson
,
Design Patterns: Elements of Reusable Object-Oriented Software
(
Addison-Wesley Professional
,
1994
).
79.
K. W.
Jacobsen
,
J. K.
Norskov
, and
M. J.
Puska
,
Phys. Rev. B
35
,
7423
(
1987
).
80.
M. N.
Bauer
,
M. I. J.
Probert
, and
C.
Panosetti
,
J. Phys. Chem. A
126
,
3043
(
2022
).
81.
A. H.
Larsen
,
M.
Vanin
,
J. J.
Mortensen
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
Phys. Rev. B
80
,
195112
(
2009
).
82.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
83.
J. J.
Mortensen
,
L. B.
Hansen
, and
K. W.
Jacobsen
,
Phys. Rev. B
71
,
035109
(
2005
).
84.
J.
Enkovaara
,
C.
Rostgaard
,
J. J.
Mortensen
 et al.,
J. Phys.: Condens. Matter
22
,
253202
(
2010
).
85.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
,
J. Chem. Theory Comput.
15
,
1652
(
2019
).
86.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
,
WIREs Comput. Mol. Sci.
11
,
e1493
(
2021
).
87.
S.
Ji
,
Y.
Chen
,
Q.
Fu
,
Y.
Chen
,
J.
Dong
,
W.
Chen
,
Z.
Li
,
Y.
Wang
,
L.
Gu
,
W.
He
,
C.
Chen
,
Q.
Peng
,
Y.
Huang
,
X.
Duan
,
D.
Wang
,
C.
Draxl
, and
Y.
Li
,
J. Am. Chem. Soc.
139
,
9795
(
2017
).
88.
M.
Valle
and
A. R.
Oganov
,
Acta Crystallogr., Sect. A
66
,
507
(
2010
).
89.
M. K.
Bisbo
and
B.
Hammer
,
Phys. Rev. B
105
,
245404
(
2022
).
90.
R. C.
Wilson
and
P.
Zhu
,
Pattern Recognit.
41
,
2833
(
2008
).
91.
P.
Wills
and
F. G.
Meyer
,
PLoS One
15
,
e0228728
(
2020
).
You do not currently have access to this content.