Uranium nitride-oxide cations [NUO]+ and their complexes with equatorial N2 ligands, [NUO·(N2)n]+ (n = 1–7), were synthesized in the gas phase. Mass-selected infrared photodissociation spectroscopy and quantum chemical calculations confirm [NUO·(N2)5]+ to be a sterically fully coordinated cation, with electronic singlet ground state of 1A1, linear [NUO]+ core, and C5v structure. The presence of short N–U bond distances and high stretching modes, with slightly elongated U–O bond distances and lowered stretching modes, is rationalized by attributing them to cooperative covalent and dative [ǀN≡U≡Oǀ]+ triple bonds. The mutual trans-interaction through flexible electronic U-5f6d7sp valence shell and the linearly increasing perturbation with increase in the number of equatorial dative N2 ligands has also been explained, highlighting the bonding characteristics and distinct features of uranium chemistry.

1.
J. F.
Gonthier
,
S. N.
Steinmann
,
M. D.
Wodrich
, and
C.
Corminboeuf
, “
Quantification of ‘fuzzy’ chemical concepts: A computational perspective
,”
Chem. Soc. Rev.
41
,
4671
4687
(
2012
).
2.
J.
Grunenberg
, “
Ill-defined chemical concepts: The problem of quantification
,”
Int. J. Quantum Chem.
117
,
e25359
(
2017
).
3.
Multiple Bonds between Metal Atoms
, edited by
F. A.
Cotton
,
C. A.
Murillo
, and
R. A.
Walton
(
Springer
,
New York
,
2005
).
4.
K.
Ruedenberg
, “
The physical nature of the chemical bond
,”
Rev. Mod. Phys.
34
,
326
370
(
1962
).
5.
M.
Zhou
,
N.
Tsumori
,
Z.
Li
,
K.
Fan
,
L.
Andrews
, and
Q.
Xu
, “
OCBBCO: A neutral molecule with some boron–boron triple bond character
,”
J. Am. Chem. Soc.
124
,
12936
12937
(
2002
).
6.
H.
Braunschweig
,
R. D.
Dewhurst
,
K.
Hammond
,
J.
Mies
,
K.
Radacki
, and
A.
Vargas
, “
Ambient-temperature isolation of a compound with a boron-boron triple bond
,”
Science
336
,
1420
1422
(
2012
).
7.
R.
Köppe
and
H.
Schnöckel
, “
The boron–boron triple bond? A thermodynamic and force field based interpretation of the N-heterocyclic carbene (NHC) stabilization procedure
,”
Chem. Sci.
6
,
1199
1205
(
2015
).
8.
Z.-L.
Wang
,
H.-S.
Hu
,
L.
Szentpály
,
H.
Stoll
,
S.
Fritzsche
,
P.
Pyykkö
,
W. H. E.
Schwarz
, and
J.
Li
, “
Understanding the uniqueness of 2p elements in periodic tables
,”
Chem. –Eur. J.
26
,
15558
15564
(
2020
).
9.
G. B.
Bacskay
, “
Orbital contraction and covalent bonding
,”
J. Chem. Phys.
156
,
204122
(
2022
).
10.
G. B.
Bacskay
,
S.
Nordholm
, and
K.
Ruedenberg
, “
The virial theorem and covalent bonding
,”
J. Phys. Chem. A
122
,
7880
7893
(
2018
).
11.
M. W.
Schmidt
,
J.
Ivanic
, and
K.
Ruedenberg
, “
Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion
,”
J. Chem. Phys.
140
,
204104
(
2014
).
12.
T.
Bitter
,
K.
Ruedenberg
, and
W. H. E.
Schwarz
, “
Toward a physical understanding of electron-sharing two-center bonds. I. General aspects
,”
J. Comput. Chem.
28
,
411
422
(
2007
).
13.
T.
Bitter
,
S. G.
Wang
,
K.
Ruedenberg
, and
W. H. E.
Schwarz
, “
Toward a physical understanding of electron-sharing two-center bonds. II. Pseudo-potential based analysis of diatomic molecules
,”
Theor. Chem. Acc.
127
,
237
257
(
2010
).
14.
S.
Shaik
,
Z.
Chen
,
W.
Wu
,
A.
Stanger
,
D.
Danovich
, and
P. C.
Hiberty
, “
An excursion from normal to inverted C−C bonds shows a clear demarcation between covalent and charge-shift C−C bonds
,”
ChemPhysChem
10
,
2658
2669
(
2009
).
15.
R.
Laplaza
,
J.
Contreras‐Garcia
,
F.
Fuster
,
F.
Volatron
, and
P.
Chaquin
, “
The ‘inverted bonds’ revisited: Analysis of ‘in silico’ models and of [1.1.1]propellane by using orbital forces
,”
Chem. –Eur. J.
26
,
6839
6845
(
2020
).
16.
H.-S.
Hu
,
Y.-H.
Qiu
,
X.-G.
Xiong
,
W. H. E.
Schwarz
, and
J.
Li
, “
On the maximum bond multiplicity of carbon: Unusual quadruple bonding in molecular CUO
,”
Chem. Sci.
3
,
2786
2796
(
2012
).
17.
B. O.
Roos
,
A. C.
Borin
, and
L.
Gagliardi
, “
Reaching the maximum multiplicity of the covalent chemical bond
,”
Angew. Chem., Int. Ed.
46
,
1469
1472
(
2007
).
18.
G.
Frenking
and
R.
Tonner
, “
The six-bond bound
,”
Nature
446
,
276
277
(
2007
).
19.
J. P.
Desclaux
, “
Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120
,”
At. Data Nucl. Data Tables
12
,
311
406
(
1973
).
20.
R. G.
Denning
, “
Electronic structure and bonding in actinyl ions
,”
Struct. Bonding
79
,
215
276
(
1992
).
21.
R. G.
Denning
, “
Electronic structure and bonding in actinyl ions and their analogs
,”
J. Phys. Chem. A
111
,
4125
4143
(
2007
).
22.
H. S.
La Pierre
and
K.
Meyer
, “
Uranium−Ligand multiple bonding in uranyl analogues, [L=U=L]n+, and the inverse trans influence
,”
Inorg. Chem.
52
,
529
539
(
2013
).
23.
C. J.
Windorff
,
C.
Celis-Barros
,
J. M.
Sperling
,
N. C.
McKinnon
, and
T. E.
Albrecht-Schmitt
, “
Probing a variation of the inverse-trans-influence in americium and lanthanide tribromide tris(tricyclohexylphosphine oxide) complexes
,”
Chem. Sci.
11
,
2770
2782
(
2020
).
24.
A. C.
Tsipis
, “
cis- and trans-ligand effects on the inverse trans-influence in [UVI(O)(L)Cl4]0/− complexes
,”
Inorg. Chem.
59
,
8946
8959
(
2020
).
25.
M.
Gregson
,
E.
Lu
,
D. P.
Mills
,
F.
Tuna
,
E. J. L.
McInnes
,
C.
Hennig
,
A. C.
Scheinost
,
J.
McMaster
,
W.
Lewis
,
A. J.
Blake
,
A.
Kerridge
, and
S. T.
Liddle
, “
The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes
,”
Nat. Commun.
8
,
14137
(
2017
).
26.
I.
Fryer-Kanssen
and
A.
Kerridge
, “
Elucidation of the inverse trans influence in uranyl and its imido and carbene analogues via quantum chemical simulation
,”
Chem. Commun.
54
,
9761
9764
(
2018
).
27.
J. L.
Jules
and
J. R.
Lombardi
, “
Toward an experimental bond order
,”
J. Mol. Struct.: THEOCHEM
664-665
,
255
271
(
2003
).
28.
A. D.
McNaught
and
A.
Wilkinson
,
Compendium of Chemical Terminology. The Gold Book
(
International Union of Pure and Applied Chemistry
,
2014
), https://goldbook.iupac.org/.
29.
M.
Kaupp
,
D.
Danovich
, and
S.
Shaik
, “
Chemistry is about energy and its changes: A critique of bond-length/bond-strength correlations
,”
Coord. Chem. Rev.
344
,
355
362
(
2017
).
30.
D.
Cremer
,
A.
Wu
,
A.
Larsson
, and
E.
Kraka
, “
Some thoughts about bond energies, bond lengths, and force constants
,”
J. Mol. Model.
6
,
396
412
(
2000
).
31.
E.
Kraka
,
W.
Zou
, and
Y.
Tao
, “
Decoding chemical information from vibrational spectroscopy data: Local vibrational mode theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1480
(
2020
).
32.
M. D.
Gould
,
C.
Taylor
,
S. K.
Wolff
,
G. S.
Chandler
, and
D.
Jayatilaka
, “
A definition for the covalent and ionic bond index in a molecule
,”
Theor. Chem. Acc.
119
,
275
290
(
2008
).
33.
L.
Andrews
,
X.
Wang
,
Y.
Gong
,
G. P.
Kushto
,
B.
Vlaisavljevich
, and
L.
Gagliardi
, “
Infrared spectra and electronic structure calculations for NN complexes with U, UN, and NUN in solid argon, neon, and nitrogen
,”
J. Phys. Chem. A
118
,
5289
5303
(
2014
).
34.
L.
Andrews
,
X.
Wang
,
Y.
Gong
,
B.
Vlaisavljevich
, and
L.
Gagliardi
, “
Infrared spectra and electronic structure calculations for the NUN(NN)1–5 and NU(NN)1–6 complexes in solid argon
,”
Inorg. Chem.
52
,
9989
9993
(
2013
).
35.
D. W.
Green
and
G. T.
Reedy
, “
The identification of UN in Ar matrices
,”
J. Chem. Phys.
65
,
2921
2922
(
1976
).
36.
R. D.
Hunt
,
J. T.
Yustein
, and
L.
Andrews
, “
Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen
,”
J. Chem. Phys.
98
,
6070
6074
(
1993
).
37.
L.
Andrews
,
X.
Wang
,
R.
Lindh
,
B. O.
Roos
, and
C. J.
Marsden
, “
Simple N≡UF3 and P≡UF3 molecules with triple bonds to uranium
,”
Angew. Chem., Int. Ed.
47
,
5366
5370
(
2008
).
38.
X.
Wang
,
L.
Andrews
,
B.
Vlaisavljevich
, and
L
Gagliardi
, “
Combined triple and double bonds to uranium: The N–U=N–H uranimine nitride molecule prepared in solid argon
,”
Inorg. Chem.
50
,
3826
3831
(
2011
).
39.
G. P.
Kushto
,
P. F.
Souter
, and
L.
Andrews
, “
An infrared spectroscopic and quasirelativistic theoretical study of the coordination and activation of dinitrogen by thorium and uranium atoms
,”
J. Chem. Phys.
108
,
7121
7130
(
1998
).
40.
D. M.
King
,
F.
Tuna
,
E. J. L.
McInnes
,
J.
McMaster
,
W.
Lewis
,
A. J.
Blake
, and
S. T.
Liddle
, “
Synthesis and structure of a terminal uranium nitride complex
,”
Science
337
,
717
(
2012
).
41.
S. S.
Rudel
,
H. L.
Deubner
,
M.
Müller
,
A. J.
Karttunen
, and
F.
Kraus
, “
Complexes featuring a linear [N≡U≡N] core isoelectronic to the uranyl cation
,”
Nat. Chem.
12
,
962
967
(
2020
).
42.
P.
Pyykkoe
,
J.
Li
, and
N.
Runeberg
, “
Quasi-relativistic pseudopotential study of species isoelectronic to uranyl and the equatorial coordination of uranyl
,”
J. Phys. Chem.
98
,
4809
4813
(
1994
).
43.
C.
Heinemann
and
H.
Schwarz
, “
NUO+, a new species isoelectronic to the uranyl dication UO22+
,”
Chem. –Eur. J.
1
,
7
11
(
1995
).
44.
M. J.
Van Stipdonk
,
M. D. C.
Michelini
,
A.
Plaviak
,
D.
Martin
, and
J. K.
Gibson
, “
Formation of bare UO22+ and NUO+ by fragmentation of gas-phase uranyl–acetonitrile complexes
,”
J. Phys. Chem. A
118
,
7838
7846
(
2014
).
45.
M.
Zhou
and
L.
Andrews
, “
Infrared spectra and pseudopotential calculations for NUO+, NUO, and NThO in solid neon
,”
J. Chem. Phys.
111
,
11044
11049
(
1999
).
46.
F.
Wei
,
G.
Wu
,
W. H. E.
Schwarz
, and
J.
Li
, “
Geometries, electronic structures, and excited states of UN2, NUO+, and UO22+: A combined CCSD(T), RAS/CASPT2 and TDDFT study
,”
Theor. Chem. Acc.
129
,
467
481
(
2011
).
47.
P.
Tecmer
,
A. S. P.
Gomes
,
U.
Ekström
, and
L.
Visscher
, “
Electronic spectroscopy of UO22+, NUO+ and NUN: An evaluation of time-dependent density functional theory for actinides
,”
Phys. Chem. Chem. Phys.
13
,
6249
6259
(
2011
).
48.
C.
Clavaguéra-Sarrio
,
N.
Ismail
,
C. J.
Marsden
,
D.
Bégué
, and
C.
Pouchan
, “
Calculation of harmonic and anharmonic vibrational wavenumbers for triatomic uranium compounds XUY
,”
Chem. Phys.
302
,
1
11
(
2004
).
49.
N.
Kaltsoyannis
, “
Computational study of analogues of the uranyl ion containing the –N=U=N– unit: Density functional theory calculations on UO22+, UON+, UN2, UO(NPH3)3+, U(NPH3)24+, [UCl4{NPR3}2] (R = H, Me), and [UOCl4{NP(C6H5)3}]
,”
Inorg. Chem.
39
,
6009
6017
(
2000
).
50.
L.
Gagliardi
and
B. O.
Roos
, “
Uranium triatomic compounds XUY (X,Y=C,N,O): A combined multiconfigurational second-order perturbation and density functional study
,”
Chem. Phys. Lett.
331
,
229
234
(
2000
).
51.
Y.
Qiu
,
H.
Hu
,
G.
Chen
, and
J.
Li
, “
Quadruple bonding of carbon in terminal carbides
,”
Sci. China: Chem.
57
,
426
434
(
2014
).
52.
T. W.
Hayton
, “
Recent developments in actinide–ligand multiple bonding
,”
Chem. Commun.
49
,
2956
2973
(
2013
).
53.
G.
Wang
,
C.
Chi
,
X.
Xing
,
C.
Ding
, and
M.
Zhou
, “
A collinear tandem time-of-flight mass spectrometer for infrared photodissociation spectroscopy of mass-selected ions
,”
Sci. China: Chem.
57
,
172
177
(
2014
).
54.
A. M.
Ricks
,
L.
Gagliardi
, and
M. A.
Duncan
, “
Infrared spectroscopy of extreme coordination: The carbonyls of U+ and UO2+
,”
J. Am. Chem. Soc.
132
,
15905
15907
(
2010
).
55.
M. F.
Crawford
,
H. L.
Welsh
, and
J. L.
Locke
, “
Infra-red absorption of oxygen and nitrogen induced by intermolecular forces
,”
Phys. Rev.
75
,
1607
(
1949
).
56.
S. R.
Battey
,
D. H.
Bross
,
K. A.
Peterson
,
T. D.
Persinger
,
R. A.
VanGundy
, and
M. C.
Heaven
, “
Spectroscopic and theoretical studies of UN and UN+
,”
J. Chem. Phys.
152
,
094302
(
2020
).
57.
K.
Dehnicke
and
J.
Strähle
, “
The transition metal-nitrogen multiple bond
,”
Angew. Chem., Int. Ed.
20
,
413
426
(
1981
).
58.
V.
Vallet
,
U.
Wahlgren
,
B.
Schimmelpfennig
,
Z.
Szabó
, and
I.
Grenthe
, “
The mechanism for water exchange in [UO2(H2O)5]2+ and [UO2(oxalate)2(H2O)]2−, as studied by quantum chemical methods
,”
J. Am. Chem. Soc.
123
,
11999
12008
(
2001
).
59.
X.
Wang
,
L.
Andrews
,
J.
Li
, and
B. E.
Bursten
, “
Significant interactions between uranium and noble-gas atoms: Coordination of the UO2+ cation by Ne, Ar, Kr, and Xe atoms
,”
Angew. Chem., Int. Ed.
43
,
2554
2557
(
2004
).
60.
A.
Kovács
and
R. J. M.
Konings
, “
Theoretical study of UX6 and UO2X2 (X=F, Cl, Br, I)
,”
J. Mol. Struct.: THEOCHEM
684
,
35
42
(
2004
).
61.
K.
Servaes
,
C.
Hennig
,
R.
Van Deun
, and
C.
Görller-Walrand
, “
Structure of [UO2Cl4]2− in acetonitrile
,”
Inorg. Chem.
44
,
7705
7707
(
2005
).
62.
M.-O.
Sornein
,
M.
Mendes
,
C.
Cannes
,
C.
Le Naour
,
P.
Nockemann
,
K.
Van Hecke
,
L.
Van Meervelt
,
J.-C.
Berthet
, and
C.
Hennig
, “
Coordination environment of [UO2Br4]2− in ionic liquids and crystal structure of [Bmim]2[UO2Br4]
,”
Polyhedron
28
,
1281
1286
(
2009
).
63.
K. W. F.
Kohlrausch
,
Der Smekal-Raman-Effekt. Ergänzungsband 1931-1937
(
Springer
,
Berlin
,
1938
), p.
64
.
64.
K.
Brandhorst
and
J.
Grunenberg
, “
Efficient computation of compliance matrices in redundant internal coordinates from Cartesian Hessians for nonstationary points
,”
J. Chem. Phys.
132
,
184101
(
2010
).
65.
E.
Kraka
,
J. A.
Larsson
,
D.
Cremer
, and
J. .
Grunenberg
, “
Generalization of the badger rule based on the use of adiabatic vibrational modes
,” in
Computational Spectroscopy: Methods, Experiments and Applications
(
Springer
,
2010
), pp.
105
149
.
66.
E.
Kraka
,
D.
Setiawan
, and
D.
Cremer
, “
Re-evaluation of the bond length–bond strength rule: The stronger bond is not always the shorter bond
,”
J. Comput. Chem.
37
,
130
142
(
2016
).
67.
J.
Grunenberg
, “
How strong is a reverse dative bond? Compliance constants as unique bond strength descriptors
,”
Inorg. Chem.
61
,
20
22
(
2022
).
68.
K.
Ruedenberg
and
W. H. E.
Schwarz
, “
Three millennia of atoms and molecules
,” in
Pioneers in Quantum Chemistry
, edited by
E. T.
Strom
and
A. K.
Wilson
(
ACS
,
Washington, DC
,
2013
), pp.
1
45
.
69.
W.
Heitler
and
F.
London
, “
Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik
,”
Z. Phys.
44
,
455
472
(
1927
).

Supplementary Material

You do not currently have access to this content.