The fluctuation theorem, where the central quantity is the work distribution, is an important characterization of nonequilibrium thermodynamics. In this work, based on the dissipaton-equation-of-motion theory, we develop an exact method to evaluate the work distributions in quantum impurity system–bath mixing processes in the presence of non-Markovian and strong couplings. Our results not only precisely reproduce the Jarzynski equality and Crooks relation but also reveal rich information on large deviation. The numerical demonstrations are carried out with a spin-boson model system.
REFERENCES
1.
U.
Seifert
, “Entropy production along a stochastic trajectory and an integral fluctuation theorem
,” Phys. Rev. Lett.
95
, 040602
(2005
).2.
P.
Talkner
and P.
Hänggi
, “Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical
,” Rev. Mod. Phys.
92
, 041002
(2020
).3.
P.
Talkner
and P.
Hänggi
, “The Tasaki–Crooks quantum fluctuation theorem
,” J. Phys. A: Math. Theor.
40
, F569
(2007
).4.
C.
Jarzynski
, “Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale
,” Annu. Rev. Condens. Matter Phys.
2
, 329
(2011
).5.
C.
Jarzynski
, “Nonequilibrium equality for free energy differences
,” Phys. Rev. Lett.
78
, 2690
(1997
).6.
G. E.
Crooks
, “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences
,” Phys. Rev. E
60
(3
), 2721
(1999
).7.
G. E.
Crooks
, “Path-ensemble averages in systems driven far from equilibrium
,” Phys. Rev. E
61
, 2361
(2000
).8.
J.
Liphardt
, S.
Dumont
, S. B.
Smith
, I.
Tinoco
, Jr., and C.
Bustamante
, “Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality
,” Science
296
, 1832
(2002
).9.
D.
Collin
, F.
Ritort
, C.
Jarzynski
, S. B.
Smith
, I.
Tinoco
, and C.
Bustamante
, “Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies
,” Nature
437
, 231
(2005
).10.
N. C.
Harris
, Y.
Song
, and C. H.
Kiang
, “Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski’s equality
,” Phys. Rev. Lett.
99
, 068101
(2007
).11.
O.-P.
Saira
, Y.
Yoon
, T.
Tanttu
, M.
Möttönen
, D. V.
Averin
, and J. P.
Pekola
, “Test of the Jarzynski and Crooks fluctuation relations in an electronic system
,” Phys. Rev. Lett.
109
, 180601
(2012
).12.
T. B.
Batalhão
, A. M.
Souza
, L.
Mazzola
, R.
Auccaise
, R. S.
Sarthour
, I. S.
Oliveira
, J.
Goold
, G.
De Chiara
, M.
Paternostro
, and R. M.
Serra
, “Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system
,” Phys. Rev. Lett.
113
, 140601
(2014
).13.
M.
Esposito
, U.
Harbola
, and S.
Mukamel
, “Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems
,” Rev. Mod. Phys.
81
, 1665
(2009
).14.
M.
Campisi
, P.
Hänggi
, and P.
Talkner
, “Colloquium: Quantum fluctuation relations: Foundations and applications
,” Rev. Mod. Phys.
83
, 771
(2011
).15.
B.
Dóra
, Á.
Bácsi
, and G.
Zaránd
, “Generalized Gibbs ensemble and work statistics of a quenched Luttinger liquid
,” Phys. Rev. B
86
, 161109
(2012
).16.
A.
Ortega
, E.
McKay
, Á. M.
Alhambra
, and E.
Martín-Martínez
, “Work distributions on quantum fields
,” Phys. Rev. Lett.
122
, 240604
(2019
).17.
H. T.
Quan
, Z.
Song
, X. F.
Liu
, P.
Zanardi
, and C. P.
Sun
, “Decay of Loschmidt echo enhanced by quantum criticality
,” Phys. Rev. Lett.
96
, 140604
(2006
).18.
A.
Silva
, “Statistics of the work done on a quantum critical system by quenching a control parameter
,” Phys. Rev. Lett.
101
, 120603
(2008
).19.
M.
Heyl
, A.
Polkovnikov
, and S.
Kehrein
, “Dynamical quantum phase transitions in the transverse-field ising model
,” Phys. Rev. Lett.
110
, 135704
(2013
).20.
N. O.
Abeling
and S.
Kehrein
, “Quantum quench dynamics in the transverse field Ising model at nonzero temperatures
,” Phys. Rev. B
93
, 104302
(2016
).21.
H.
Gong
, Y.
Wang
, H.-D.
Zhang
, Q.
Qiao
, R.-X.
Xu
, X.
Zheng
, and Y. J.
Yan
, “Equilibrium and transient thermodynamics: A unified dissipaton-space approach
,” J. Chem. Phys.
153
, 154111
(2020
).22.
H.
Gong
, Y.
Wang
, H.-D.
Zhang
, R.-X.
Xu
, X.
Zheng
, and Y. J.
Yan
, “Thermodynamic free-energy spectrum theory for open quantum systems
,” J. Chem. Phys.
153
, 214115
(2020
).23.
M.
Wiedmann
, J. T.
Stockburger
, and J.
Ankerhold
, “Non-Markovian dynamics of a quantum heat engine: Out-of-equilibrium operation and thermal coupling control
,” New J. Phys.
22
, 033007
(2020
).24.
M.
Carrega
, L. M.
Cangemi
, G.
De Filippis
, C.
Vittorio
, G.
Benenti
, and M.
Sassetti
, “Engineering dynamical couplings for quantum thermodynamic tasks
,” PRX Quantum
3
, 010323
(2022
).25.
P.
Talkner
, E.
Lutz
, and P.
Hänggi
, “Fluctuation theorems: Work is not an observable
,” Phys. Rev. E
75
, 050102
(2007
).26.
S.
Sakamoto
and Y.
Tanimura
, “Open quantum dynamics theory for non-equilibrium work: Hierarchical equations of motion approach
,” J. Phys. Soc. Jpn.
90
, 033001
(2021
).27.
Y. J.
Yan
, J. S.
Jin
, R.-X.
Xu
, and X.
Zheng
, “Dissipaton equation of motion approach to open quantum systems
,” Front. Phys.
11
, 110306
(2016
).28.
Y. J.
Yan
, “Theory of open quantum systems with bath of electrons and phonons and spins: Many-dissipaton density matrixes approach
,” J. Chem. Phys.
140
, 054105
(2014
).29.
H.-D.
Zhang
, R.-X.
Xu
, X.
Zheng
, and Y. J.
Yan
, “Statistical quasi-particle theory for open quantum systems
,” Mol. Phys.
116
, 780
(2018
), part of special issue on Molecular Physics in China.30.
J. D.
Jaramillo
, J.
Deng
, and J.
Gong
, “Quantum work fluctuations in connection with the Jarzynski equality
,” Phys. Rev. E
96
, 042119
(2017
).31.
P.-L.
Du
, Y.
Wang
, R.-X.
Xu
, H.-D.
Zhang
, and Y. J.
Yan
, “System-bath entanglement theorem with Gaussian environments
,” J. Chem. Phys.
152
, 034102
(2020
).32.
U.
Seifert
, “Stochastic thermodynamics, fluctuation theorems and molecular machines
,” Rep. Prog. Phys.
75
, 126001
(2012
).33.
K.
Ptaszyński
and M.
Esposito
, “Entropy production in open systems: The predominant role of intraenvironment correlations
,” Phys. Rev. Lett.
123
, 200603
(2019
).34.
G. T.
Landi
and M.
Paternostro
, “Irreversible entropy production: From classical to quantum
,” Rev. Mod. Phys.
93
, 035008
(2021
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.