We introduce new correlation consistent effective core potentials (ccECPs) for the elements I, Te, Bi, Ag, Au, Pd, Ir, Mo, and W with 4d, 5d, 6s, and 6p valence spaces. These ccECPs are given as a sum of spin-orbit averaged relativistic effective potential (AREP) and effective spin–orbit (SO) terms. The construction involves several steps with increasing refinements from more simple to fully correlated methods. The optimizations are carried out with objective functions that include weighted many-body atomic spectra, norm-conservation criteria, and SO splittings. Transferability tests involve molecular binding curves of corresponding hydride and oxide dimers. The constructed ccECPs are systematically better and in a few cases on par with previous effective core potential (ECP) tables on all tested criteria and provide a significant increase in accuracy for valence-only calculations with these elements. Our study confirms the importance of the AREP part in determining the overall quality of the ECP even in the presence of sizable spin–orbit effects. The subsequent quantum Monte Carlo calculations point out the importance of accurate trial wave functions that, in some cases (mid-series transition elements), require treatment well beyond a single-reference.

1.
L.
Fernandez Pacios
and
P. A.
Christiansen
,
J. Chem. Phys.
82
,
2664
(
1985
).
2.
M. M.
Hurley
,
L. F.
Pacios
,
P. A.
Christiansen
,
R. B.
Ross
, and
W. C.
Ermler
,
J. Chem. Phys.
84
,
6840
(
1986
).
3.
L. A.
LaJohn
,
P. A.
Christiansen
,
R. B.
Ross
,
T.
Atashroo
, and
W. C.
Ermler
,
J. Chem. Phys.
87
,
2812
(
1987
).
4.
R. B.
Ross
,
J. M.
Powers
,
T.
Atashroo
,
W. C.
Ermler
,
L. A.
LaJohn
, and
P. A.
Christiansen
,
J. Chem. Phys.
93
,
6654
(
1990
).
5.
W. J.
Stevens
,
M.
Krauss
,
H.
Basch
, and
P. G.
Jasien
,
Can. J. Chem.
70
,
612
(
1992
).
6.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
7.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
,
J. Chem. Phys.
126
,
234105
(
2007
).
8.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
,
J. Chem. Phys.
129
,
164115
(
2008
).
9.
A.
Bergner
,
M.
Dolg
,
W.
Küchle
,
H.
Stoll
, and
H.
Preuß
,
Mol. Phys.
80
,
1431
(
1993
).
10.
M.
Dolg
,
U.
Wedig
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
86
,
866
(
1987
).
11.
G. B.
Bachelet
,
D. R.
Hamann
, and
M.
Schlüter
,
Phys. Rev. B
26
,
4199
(
1982
).
12.
J. R.
Trail
and
R. J.
Needs
,
J. Chem. Phys.
146
,
204107
(
2017
).
13.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
14.
M.
Dolg
and
X.
Cao
,
Chem. Rev.
112
,
403
(
2012
).
15.
M.
Fuchs
and
M.
Scheffler
,
Comput. Phys. Commun.
119
,
67
(
1999
).
16.
See http://opium.sourceforge.net/sci.html for Opium—pseudopotential generation project.
17.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
18.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
19.
E. L.
Shirley
and
R. M.
Martin
,
Phys. Rev. B
47
,
15413
(
1993
).
20.
E. L.
Shirley
,
X.
Zhu
, and
S. G.
Louie
,
Phys. Rev. B
56
,
6648
(
1997
).
21.
E. L.
Shirley
,
D. C.
Allan
,
R. M.
Martin
, and
J. D.
Joannopoulos
,
Phys. Rev. B
40
,
3652
(
1989
).
22.
G.
Kresse
,
J.
Hafner
, and
R. J.
Needs
,
J. Phys.: Condens. Matter
4
,
7451
(
1992
).
23.
M. C.
Bennett
,
C. A.
Melton
,
A.
Annaberdiyev
,
G.
Wang
,
L.
Shulenburger
, and
L.
Mitas
,
J. Chem. Phys.
147
,
224106
(
2017
).
24.
M. C.
Bennett
,
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
L.
Shulenburger
, and
L.
Mitas
,
J. Chem. Phys.
149
,
104108
(
2018
).
25.
A.
Annaberdiyev
,
G.
Wang
,
C. A.
Melton
,
M. C.
Bennett
,
L.
Shulenburger
, and
L.
Mitas
,
J. Chem. Phys.
149
,
134108
(
2018
).
26.
A.
Annaberdiyev
,
C. A.
Melton
,
M. C.
Bennett
,
G.
Wang
, and
L.
Mitas
,
J. Chem. Theory Comput.
16
,
1482
(
2020
).
27.
L.
Margulis
,
G.
Salitra
,
R.
Tenne
, and
M.
Talianker
,
Nature
365
,
113
(
1993
).
28.
L. L.
Handy
and
N. W.
Gregory
,
J. Am. Chem. Soc.
74
,
891
(
1952
).
29.
H.
Wang
,
V.
Eyert
, and
U.
Schwingenschlögl
,
J. Phys.: Condens. Matter
23
,
116003
(
2011
).
30.
X.
Li
and
J.
Yang
,
J. Mater. Chem. C
2
,
7071
(
2014
).
31.
C. A.
Melton
,
M.
Zhu
,
S.
Guo
,
A.
Ambrosetti
,
F.
Pederiva
, and
L.
Mitas
,
Phys. Rev. A
93
,
042502
(
2016
).
32.
Y. S.
Lee
,
W. C.
Ermler
, and
K. S.
Pitzer
,
J. Chem. Phys.
67
,
5861
(
1977
).
33.
W. C.
Ermler
,
Y. S.
Lee
,
P. A.
Christiansen
, and
K. S.
Pitzer
,
Chem. Phys. Lett.
81
,
70
(
1981
).
34.
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
M. C.
Bennett
,
L.
Shulenburger
, and
L.
Mitas
,
J. Chem. Phys.
151
,
144110
(
2019
).
35.
H.
Stoll
,
B.
Metz
, and
M.
Dolg
,
J. Comput. Chem.
23
,
767
(
2002
).
36.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
).
37.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
38.
R.
Bast
,
A. S. P.
Gomes
,
T.
Saue
,
L.
Visscher
, and
H. J. Aa.
Jensen
, with contributions from
I. A.
Aucar
,
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
L.
Halbert
,
E. D.
Hedegård
,
T.
Helgaker
,
B.
Helmich–Paris
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
N. H.
List
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Papadopoulos
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
J. V.
Pototschnig
,
R.
di Remigio
,
M.
Repisky
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
B.
Senjean
,
A.
Shee
,
J.
Sikkema
,
A.
Sunaga
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
M. L.
Vidal
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
(
2021
), “
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC21
,” Zenodo. , see http://www.diracprogram.org.
39.
T.
Leininger
,
A.
Berning
,
A.
Nicklass
,
H.
Stoll
,
H.-J.
Werner
, and
H.-J.
Flad
,
Chem. Phys.
217
,
19
(
1997
).
40.
T. H.
Dunning
and
P. J.
Hay
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer III
(
Plenum, New York
,
1977
), Vol. 3, pp.
1
28
.
41.
M. D.
Morse
,
Chem. Rev.
86
,
1049
(
1986
).
42.
See https://pseudopotentiallibrary.org for Pseudopotential Library: A community website for pseudopotentials/effective core potentials developed for high accuracy correlated many-body methods such as quantum Monte Carlo and quantum chemistry; accessed 01 May 2021.
43.
B.
Blaiszik
,
K.
Chard
,
J.
Pruyne
,
R.
Ananthakrishnan
,
S.
Tuecke
, and
I.
Foster
,
JOM
68
,
2045
(
2016
).
44.
B.
Blaiszik
,
L.
Ward
,
M.
Schwarting
,
J.
Gaff
,
R.
Chard
,
D.
Pike
,
K.
Chard
, and
I.
Foster
,
MRS Commun.
9
,
1125
(
2019
).
45.
G.
Wang
,
B.
Kincaid
,
H.
Zhou
,
A.
Annaberdiyev
,
M. C.
Bennett
,
J. T.
Krogel
, and
L.
Mitas
(2022), “
A new generation of effective core potentials from correlated and spin-orbit calculations: Selected heavy elements
,” Dataset.

Supplementary Material

You do not currently have access to this content.