Using Lifshitz theory, we assess the role of van der Waals forces at interfaces of ice and water. The results are combined with measured structural forces from computer simulations to develop a quantitative model of the surface free energy of premelting films. This input is employed within the framework of wetting theory and allows us to predict qualitatively the behavior of quasi-liquid layer thickness as a function of ambient conditions. Our results emphasize the significance of vapor pressure. The ice–vapor interface is shown to exhibit only incomplete premelting, but the situation can shift to a state of complete surface melting above water saturation. The results obtained serve also to assess the role of subsurface freezing at the water–vapor interface, and we show that intermolecular forces favor subsurface ice nucleation only in conditions of water undersaturation. We show that ice regelation at ambient pressure may be explained as a process of capillary freezing, without the need to invoke the action of bulk pressure melting. Our results for van der Waals forces are exploited in order to gauge dispersion interactions in empirical point charge models of water.

1.
O.
Björneholm
,
M. H.
Hansen
,
A.
Hodgson
,
L.-M.
Liu
,
D. T.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
,
E.
Tyrode
,
M.-M.
Walz
,
J.
Werner
, and
H.
Bluhm
, “
Water at interfaces
,”
Chem. Rev.
116
,
7698
7726
(
2016
).
2.
T.
Bartels-Rausch
,
V.
Bergeron
,
J. H. E.
Cartwright
,
R.
Escribano
,
J. L.
Finney
,
H.
Grothe
,
P. J.
Gutiérrez
,
J.
Haapala
,
W. F.
Kuhs
,
J. B. C.
Pettersson
,
S. D.
Price
,
C. I.
Sainz-Díaz
,
D. J.
Stokes
,
G.
Strazzulla
,
E. S.
Thomson
,
H.
Trinks
, and
N.
Uras-Aytemiz
, “
Ice structures, patterns, and processes: A view across the icefields
,”
Rev. Mod. Phys.
84
,
885
944
(
2012
).
3.
K. G.
Libbrecht
,
Snow Crystals
(
Princeton University Press
,
2022
).
4.
H. R.
Pruppacher
and
J. D.
Klett
,
Microphysics of Clouds and Precipitation
(
Springer
,
Heidelberg
,
2010
).
5.
W. A.
Weyl
, “
Surface structure of water and some of its physical and chemical manifestations
,”
J. Colloid Sci.
6
,
389
405
(
1951
).
6.
R.
Lipowsky
, “
Critical surface phenomena at first-order bulk transitions
,”
Phys. Rev. Lett.
49
,
1575
1578
(
1982
).
7.
S.
Dietrich
, “
Wetting phenomena
,” in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic
,
New York
,
1988
), Vol. 12, pp.
1
89
.
8.
M.
Schick
, “
Introduction to wetting phenomena
,” in
Liquids at Interfaces
, Les Houches Lecture Notes (
Elsevier
,
Amsterdam
,
1990
), pp.
1
89
.
9.
H. H. G.
Jellinek
, “
Liquid-like (transition) layer on ice
,”
J. Colloid Interface Sci.
25
,
192
205
(
1967
).
10.
D.
Nenow
, “
Surface premelting
,”
Prog. Cryst. Growth Charact. Mater.
9
,
185
225
(
1984
).
11.
V. F.
Petrenko
,
The Surface of Ice
,
Cold Regions Research and Engineering Laboratory
, Special Report No. 94-22,
1994
.
12.
J. G.
Dash
,
H.
Fu
, and
J. S.
Wettlaufer
, “
The premelting of ice and its environmental consequences
,”
Rep. Prog. Phys.
58
,
115
167
(
1995
).
13.
R.
Rosenberg
, “
Why is ice slippery?
,”
Phys. Today
58
(
12
),
50
55
(
2005
).
14.
J. G.
Dash
,
A. W.
Rempel
, and
J. S.
Wettlaufer
, “
The physics of premelted ice and its geophysical consequences
,”
Rev. Mod. Phys.
78
,
695
741
(
2006
).
15.
B.
Slater
and
A.
Michaelides
, “
Surface premelting of water ice
,”
Nat. Rev. Chem.
3
,
172
188
(
2019
).
16.
Y.
Nagata
,
T.
Hama
,
E. H. G.
Backus
,
M.
Mezger
,
D.
Bonn
,
M.
Bonn
, and
G.
Sazaki
, “
The surface of ice under equilibrium and nonequilibrium conditions
,”
Acc. Chem. Res.
52
,
1006
1015
(
2019
).
17.
M.
Elbaum
, “
Roughening transition observed on the prism facet of ice
,”
Phys. Rev. Lett.
67
,
2982
2985
(
1991
).
18.
J. S.
Wettlaufer
, “
Impurity effects in the premelting of ice
,”
Phys. Rev. Lett.
82
,
2516
2519
(
1999
).
19.
Y.
Li
and
G. A.
Somorjai
, “
Surface premelting of ice
,”
J. Phys. Chem. C
111
,
9631
9637
(
2007
).
20.
P.
Llombart
,
E. G.
Noya
,
D. N.
Sibley
,
A. J.
Archer
, and
L. G.
MacDowell
, “
Rounded layering transitions on the surface of ice
,”
Phys. Rev. Lett.
124
,
065702
(
2020
).
21.
D. N.
Sibley
,
P.
Llombart
,
E. G.
Noya
,
A. J.
Archer
, and
L. G.
MacDowell
, “
How ice grows from premelting films and liquid droplets
,”
Nat. Commun.
12
,
239
(
2021
).
22.
R.
Lipowsky
,
U.
Breuer
,
K. C.
Prince
, and
H. P.
Bonzel
, “
Multicomponent order parameter for surface melting
,”
Phys. Rev. Lett.
62
,
913
916
(
1989
).
23.
D. T.
Limmer
and
D.
Chandler
, “
Premelting, fluctuations, and coarse-graining of water-ice interfaces
,”
J. Chem. Phys.
141
,
18C505
(
2014
).
24.
H.
Li
,
M.
Bier
,
J.
Mars
,
H.
Weiss
,
A.-C.
Dippel
,
O.
Gutowski
,
V.
Honkimäki
, and
M.
Mezger
, “
Interfacial premelting of ice in nano composite materials
,”
Phys. Chem. Chem. Phys.
21
,
3734
3741
(
2019
).
25.
A. A.
Chernov
and
L. V.
Mikheev
, “
Wetting of solid surfaces by a structured simple liquid: Effect of fluctuations
,”
Phys. Rev. Lett.
60
,
2488
2491
(
1988
).
26.
J. R.
Henderson
, “
Wetting phenomena and the decay of correlations at fluid interfaces
,”
Phys. Rev. E
50
,
4836
4846
(
1994
).
27.
J. R.
Henderson
, “
Statistical mechanics of the disjoining pressure of a planar film
,”
Phys. Rev. E
72
,
051602
(
2005
).
28.
M.
Elbaum
and
M.
Schick
, “
Application of the theory of dispersion forces to the surface melting of ice
,”
Phys. Rev. Lett.
66
,
1713
1716
(
1991
).
29.
V. A.
Parsegian
,
Van der Waals Forces
(
Cambridge University Press
,
Cambridge
,
2005
), pp.
1
311
.
30.
V. A.
Parsegian
and
G. H.
Weiss
, “
Spectroscopic parameters for computation of van der Waals forces
,”
J. Colloid Interface Sci.
81
,
285
289
(
1981
).
31.
C. M.
Roth
and
A. M.
Lenhoff
, “
Improved parametric representation of water dielectric data for lifshitz theory calculations
,”
J. Colloid Interface Sci.
179
,
637
639
(
1996
).
32.
R. R.
Dagastine
,
D. C.
Prieve
, and
L. R.
White
, “
The dielectric function for water and its application to van der Waals forces
,”
J. Colloid Interface Sci.
231
,
351
358
(
2000
).
33.
J. M.
Fernández-Varea
and
R.
Garcia-Molina
, “
Hamaker constants of systems involving water obtained from a dielectric function that fulfills the f sum rule
,”
J. Colloid Interface Sci.
231
,
394
397
(
2000
).
34.
J.
Wang
and
A. V.
Nguyen
, “
A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces
,”
Adv. Colloid Interface Sci.
250
,
54
63
(
2017
).
35.
J.
Luengo
, “
Fuerzas de van der Waals en la superficie del hielo
,” degree thesis,
Universidad Complutense de Madrid
,
2019
.
36.
J.
Luengo
and
L. G.
MacDowell
, “
Van der Waals forces at ice surfaces with atmospheric interest
,” M.S. thesis,
Facultad de Ciencias
,
2020
.
37.
J.
Fiedler
,
M.
Boström
,
C.
Persson
,
I.
Brevik
,
R.
Corkery
,
S. Y.
Buhmann
, and
D. F.
Parsons
, “
Full-spectrum high-resolution modeling of the dielectric function of water
,”
J. Phys. Chem. B
124
,
3103
3113
(
2020
).
38.
J.
Luengo-Márquez
and
L. G.
MacDowell
, “
Lifshitz theory of wetting films at three phase coexistence: The case of ice nucleation on silver iodide (AgI)
,”
J. Colloid Interface Sci.
590
,
527
538
(
2021
).
39.
M.
Moazzami Gudarzi
and
S.
Hamed Aboutalebi
, “
Self-consistent dielectric functions of materials: Toward accurate computation of Casimir–van der Waals forces
,”
Sci. Adv.
7
,
eabg2272
(
2021
).
40.
H. R.
Zelsmann
, “
Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region
,”
J. Mol. Struct.
350
,
95
114
(
1995
).
41.
D. J.
Segelstein
, “
The complex refractive index of water
,” Ph.D. thesis,
University of Missouri–Kansas City
,
1981
.
42.
D. M.
Wieliczka
,
S.
Weng
, and
M. R.
Querry
, “
Wedge shaped cell for highly absorbent liquids: Infrared optical constants of water
,”
Appl. Opt.
28
,
1714
1719
(
1989
).
43.
J. E.
Bertie
and
Z.
Lan
, “
Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 °C between 15,000 and 1 cm−1
,”
Appl. Spectrosc.
50
,
1047
1057
(
1996
).
44.
J. M.
Heller
,
R. N.
Hamm
,
R. D.
Birkhoff
, and
L. R.
Painter
, “
Collective oscillation in liquid water
,”
J. Chem. Phys.
60
,
3483
3486
(
1974
).
45.
H.
Hayashi
and
N.
Hiraoka
, “
Accurate measurements of dielectric and optical functions of liquid water and liquid benzene in the VUV region (1–100 eV) using small-angle inelastic x-ray scattering
,”
J. Phys. Chem. B
119
,
5609
5623
(
2015
).
46.
F.
Buckley
,
Tables of Dielectric Dispersion Data for Pure Liquids and Dilute Solutions
(
National Bureau of Standards Circular
,
1958
), Vol. 589, pp.
7
8
.
47.
S. G.
Warren
and
R. E.
Brandt
, “
Optical constants of ice from the ultraviolet to the microwave: A revised compilation
,”
J. Geophys. Res.
113
,
D14220
, (
2008
).
48.
M.
Seki
,
K.
Kobayashi
, and
J.
Nakahara
, “
Optical spectra of hexagonal ice
,”
J. Phys. Soc. Jpn.
50
,
2643
2648
(
1981
).
49.
R. P.
Auty
and
R. H.
Cole
, “
Dielectric properties of ice and solid D2O
,”
J. Chem. Phys.
20
,
1309
1314
(
1952
).
50.
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
, “
General theory of van der Waals forces
,”
Sov. Phys. Usp.
4
,
153
176
(
1961
).
51.
B. W.
Ninham
,
V. A.
Parsegian
, and
G. H.
Weiss
, “
On the macroscopic theory of temperature-dependent van der Waals forces
,”
J. Stat. Phys.
2
,
323
328
(
1970
).
52.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
53.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
54.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
55.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
56.
M.
Shishkin
and
G.
Kresse
, “
Implementation and performance of the frequency-dependent GW method within the PAW framework
,”
Phys. Rev. B
74
,
035101
(
2006
).
57.
F.
Fuchs
,
J.
Furthmüller
,
F.
Bechstedt
,
M.
Shishkin
, and
G.
Kresse
, “
Quasiparticle band structure based on a generalized Kohn-Sham scheme
,”
Phys. Rev. B
76
,
115109
(
2007
).
58.
M.
Gajdoš
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmüller
, and
F.
Bechstedt
, “
Linear optical properties in the projector-augmented wave methodology
,”
Phys. Rev. B
73
,
045112
(
2006
).
59.
R. W.
Nunes
and
X.
Gonze
, “
Berry-phase treatment of the homogeneous electric field perturbation in insulators
,”
Phys. Rev. B
63
,
155107
(
2001
).
60.
J.
Benet
,
P.
Llombart
,
E.
Sanz
, and
L. G.
MacDowell
, “
Premelting-induced smoothening of the ice-vapor interface
,”
Phys. Rev. Lett.
117
,
096101
(
2016
).
61.
J.
Benet
,
P.
Llombart
,
E.
Sanz
, and
L. G.
MacDowell
, “
Structure and fluctuations of the premelted liquid film of ice at the triple point
,”
Mol. Phys.
117
,
2846
2864
(
2019
).
62.
P.
Llombart
,
R. M.
Bergua
,
E. G.
Noya
, and
L. G.
MacDowell
, “
Structure and water attachment rates of ice in the atmosphere: Role of nitrogen
,”
Phys. Chem. Chem. Phys.
21
,
19594
19611
(
2019
).
63.
P.
Llombart
,
E. G.
Noya
, and
L. G.
MacDowell
, “
Surface phase transitions and crystal habits of ice in the atmosphere
,”
Sci. Adv.
6
,
eaay9322
(
2020
).
64.
A.
Tabazadeh
,
Y. S.
Djikaev
, and
H.
Reiss
, “
Surface crystallization of supercooled water in clouds
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
15873
15878
(
2002
).
65.
R. A.
Shaw
,
A. J.
Durant
, and
Y.
Mi
, “
Heterogeneous surface crystallization observed in undercooled water
,”
J. Phys. Chem. B
109
,
9865
9868
(
2005
).
66.
T.
Li
,
D.
Donadio
, and
G.
Galli
, “
Ice nucleation at the nanoscale probes no man’s land of water
,”
Nat. Commun.
4
,
1887
(
2013
).
67.
S.
Hussain
and
A.
Haji-Akbari
, “
Role of nanoscale interfacial proximity in contact freezing in water
,”
J. Am. Chem. Soc.
143
,
2272
2284
(
2021
).
68.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Phys. Chem.
79
,
926
935
(
1983
).
69.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
70.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
71.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TiP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
72.
J.
Henriques
and
M.
Skepö
, “
Molecular dynamics simulations of intrinsically disordered proteins: On the accuracy of the TIP4P-D water model and the representativeness of protein disorder models
,”
J. Chem. Theory Comput.
12
,
3407
3415
(
2016
).
73.
C.
Cohen-Tannoudji
,
D.
Bernard
, and
L.
Frank
,
Quantum Mechanics
(
Wiley VCH
,
Paris
,
2005
), Vol. 2.
74.
H. C.
Hamaker
, “
The London—van der Waals attraction between spherical particles
,”
Physica
4
,
1058
1072
(
1937
).
75.
J.
Gregory
, “
Approximate expressions for retarded van der Waals interaction
,”
J. Colloid Interface Sci.
83
,
138
145
(
1981
).
76.
J. N.
Israelachvili
,
Intermolecular and Surfaces Forces
, 3rd ed. (
Academic Press
,
London
,
1991
), pp.
1
674
.
77.
L. G.
MacDowell
, “
Surface van der Waals forces in a nutshell
,”
J. Chem. Phys.
150
,
081101
(
2019
).
78.
B. W.
Ninham
and
V. A.
Parsegian
, “
Van der Waals forces: Special characteristics in lipid-water systems and a general method of calculation based on the lifshitz theory
,”
Biophys. J.
10
,
646
663
(
1970
).
79.
M.
Dingfelder
,
D.
Hantke
,
M.
Inokuti
, and
H. G.
Paretzke
, “
Electron inelastic-scattering cross sections in liquid water
,”
Radiat. Phys. Chem.
53
,
1
18
(
1998
).
80.
D.
Emfietzoglou
,
H.
Nikjoo
,
I. D.
Petsalakis
, and
A.
Pathak
, “
A consistent dielectric response model for water ice over the whole energy–momentum plane
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
256
,
141
147
(
2007
), part of the Special Issue: Atomic Collisions in Solids.
81.
R.
Brendel
and
D.
Bormann
, “
An infrared dielectric function model for amorphous solids
,”
J. Appl. Phys.
71
,
1
6
(
1992
).
82.
J.
Orosco
and
C. F. M.
Coimbra
, “
On a causal dispersion model for the optical properties of metals
,”
Appl. Opt.
57
,
5333
5347
(
2018
).
83.
D.
Lide
,
Handbook of Chemistry and Physics
(
CRC Press
,
1994
).
84.
Y.
Li
,
K. A.
Milton
,
I.
Brevik
,
O. I.
Malyi
,
P.
Thiyam
,
C.
Persson
,
D. F.
Parsons
, and
M.
Boström
,
Phys. Rev. B
105
,
014203
(
2022
).
85.
J.
Luengo-Márquez
and
L. G.
MacDowell
, “
Analytical theory for the crossover from retarded to non-retarded interactions between metal plates
,”
J. Phys.: Condens. Matter
34
,
275701
(
2022
).
86.
M.
Elbaum
,
S. G.
Lipson
, and
J. G.
Dash
, “
Optical study of surface melting on ice
,”
J. Cryst. Growth
129
,
491
505
(
1993
).
87.
D. B.
Tanner
,
Optical Effects in Solids
(
Cambridge University Press
,
Cambridge
,
2013
).
88.
L. A.
Wilen
,
J. S.
Wettlaufer
,
M.
Elbaum
, and
M.
Schick
, “
Dispersion-force effects in interfacial premelting of ice
,”
Phys. Rev. B
52
,
12426
12433
(
1995
).
89.
R. H.
French
,
V.
Adrian Parsegian
,
R.
Podgornik
,
R. F.
Rajter
,
A.
Jagota
,
J.
Luo
,
D.
Asthagiri
,
M. K.
Chaudhury
,
Y.-m.
Chiang
,
S.
Granick
,
S.
Kalinin
,
M.
Kardar
,
R.
Kjellander
,
D. C.
Langreth
,
J.
Lewis
,
S.
Lustig
,
D.
Wesolowski
,
J. S.
Wettlaufer
,
W.-Y.
Ching
,
M.
Finnis
,
F.
Houlihan
,
O.
Anatole von Lilienfeld
,
C.
Jan van Oss
, and
T.
Zemb
, “
Long range interactions in nanoscale science
,”
Rev. Mod. Phys.
82
,
1887
1944
(
2010
).
90.
M.
Boström
,
O. I.
Malyi
,
P.
Parashar
,
K. V.
Shajesh
,
P.
Thiyam
,
K. A.
Milton
,
C.
Persson
,
D. F.
Parsons
, and
I.
Brevik
, “
Lifshitz interaction can promote ice growth at water-silica interfaces
,”
Phys. Rev. B
95
,
155422
(
2017
).
91.
P.
Thiyam
,
J.
Fiedler
,
S. Y.
Buhmann
,
C.
Persson
,
I.
Brevik
,
M.
Boström
, and
D. F.
Parsons
, “
Ice particles sink below the water surface due to a balance of salt, van der Waals, and buoyancy forces
,”
J. Phys. Chem. C
122
,
15311
15317
(
2018
).
92.
V.
Esteso
,
S.
Carretero-Palacios
,
L. G.
MacDowell
,
J.
Fiedler
,
D. F.
Parsons
,
F.
Spallek
,
H.
Míguez
,
C.
Persson
,
S.
Yoshi Buhmann
,
I.
Brevik
, and
M.
Boström
, “
Premelting of ice adsorbed on a rock surface
,”
Phys. Chem. Chem. Phys.
22
,
11362
11373
(
2020
).
93.
B. V.
Derjaguin
, “
Modern state of the investigation of long-range surface forces
,”
Langmuir
3
,
601
606
(
1987
).
94.
M.
Elbaum
and
M.
Schick
, “
On the failure of water to freeze from its surface
,”
J. Phys. I
1
,
1665
1668
(
1991
).
95.
S.
Dietrich
and
M.
Schick
, “
Order of wetting transitions
,”
Phys. Rev. B
33
,
4952
4968
(
1986
).
96.
S.
Dietrich
and
M.
Napiórkowski
, “
Analytic results for wetting transitions in the presence of van der Waals tails
,”
Phys. Rev. A
43
,
1861
1885
(
1991
).
97.
L. G.
MacDowell
, “
Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
,”
Phys. Rev. E
96
,
022801
(
2017
).
98.
P.
Nozieres
, in
Solids Far from Equilibrium
(
Cambridge University Press
,
1992
), Chap. 1, pp.
1
152
.
99.
N.
Fukuta
, “
An origin of the equilibrium liquid-like layer on ice
,”
J. Phys. Colloq.
48
,
C-503
C-509
(
1987
).
100.
L.
Makkonen
, “
Surface melting of ice
,”
J. Phys. Chem. B
101
,
6196
6200
(
1997
).
101.
C. A.
Knight
, “
The contact angle of water on ice
,”
J. Colloid Interface Sci.
25
,
280
284
(
1967
).
102.
C. A.
Knight
, “
Experiments on the contact angle of water on ice
,”
Philos. Mag.
23
,
153
165
(
1971
).
103.
T.
Gonda
,
T.
Arai
, and
T.
Sei
, “
Experimental study on the melting process of ice crystals just below the melting point
,”
Polar Meteorol. Glaciol.
13
,
38
42
(
1999
).
104.
K.-i.
Murata
,
A.
Harutoshi
,
K.
Nagashima
,
Y.
Furukawa
, and
G.
Sazaki
, “
Thermodynamic origin of surface melting on ice crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E6741
E6748
(
2016
).
105.
T.
Kuroda
and
R.
Lacmann
, “
Growth kinetics of ice from the vapour phase and its growth forms
,”
J. Cryst. Growth
56
,
189
205
(
1982
).
106.
D.
Nenow
and
A.
Trayanov
, “
Thermodynamics of crystal surfaces with quasi-liquid layer
,”
J. Cryst. Growth
79
,
801
805
(
1986
).
107.
T.
Kuroda
and
T.
Gonda
, “
Vapor growth mechanism of a crystal surface covered with a quasi-liquid layer—Effect of self-diffusion coefficient of the quasi-liquid-layer on the growth rate
,”
J. Cryst. Growth
99
,
83
87
(
1990
).
108.
C. A.
Knight
, “
Surface layers on ice
,”
J. Geophys. Res.: Atmos.
101
,
12921
12928
, (
1996
).
109.
N. H.
Fletcher
,
The Chemical Physics of Ice
, Cambridge Books Online (
Cambridge University Press
,
1970
).
110.
W. M.
Ketcham
and
P. V.
Hobbs
, “
An experimental determination of the surface energies of ice
,”
Philos. Mag.
19
,
1161
1173
(
1969
).
111.
S.
Neshyba
,
J.
Adams
,
K.
Reed
,
P. M.
Rowe
, and
I.
Gladich
, “
A quasi-liquid mediated continuum model of faceted ice dynamics
,”
J. Geophys. Res.: Atmos.
121
,
14,035
14,055
, (
2016
).
112.
M.
Ali
and
P. G.
Kusalik
, “
Probing ice growth from vapor phase: A molecular dynamics simulation approach
,”
J. Cryst. Growth
483
,
156
163
(
2018
).
113.
J. J.
Métois
and
J. C.
Heyraud
, “
The overheating of lead crystals
,”
J. Phys.
50
,
3175
3179
(
1989
).
114.
M.
Faraday
, “
Note on regelation
,”
Proc. R. Soc. London, Ser. A
10
,
440
450
(
1860
).
115.
J.
Thomson
and
W.
Thomson
 III
, “
Note on professor Faraday’s recent experiments on regelation
,”
Proc. R. Soc. London, Ser. A
11
,
198
204
(
1862
).
116.
J. S.
Wettlaufer
and
M.
Grae Worster
, “
Premelting dynamics
,”
Annu. Rev. Fluid Mech.
38
,
427
452
(
2006
).
117.
J. L.
Pérez-Díaz
,
M. A.
Álvarez-Valenzuela
, and
F.
Rodríguez-Celis
, “
Surface freezing of water
,”
Springerplus
5
,
629
(
2016
).
118.
C.
Vega
,
M.
Martin-Conde
, and
A.
Patrykiejew
, “
Absence of superheating for ice Ih with a free surface: A new method of determining the melting point of different water models
,”
Mol. Phys.
104
,
3583
3592
(
2006
).
119.
S.
Neshyba
,
E.
Nugent
,
M.
Roeselová
, and
P.
Jungwirth
, “
Molecular dynamics study of ice-vapor interactions via the quasi-liquid layer
,”
J. Phys. Chem. C
113
,
4597
4604
(
2009
).
120.
T.
Kling
,
F.
Kling
, and
D.
Donadio
, “
Structure and dynamics of the quasi-liquid layer at the surface of ice from molecular simulations
,”
J. Phys. Chem. C
122
,
24780
24787
(
2018
).
121.
Y.
Qiu
and
V.
Molinero
, “
Why is it so difficult to identify the onset of ice premelting?
,”
J. Phys. Chem. Lett.
9
,
5179
5182
(
2018
).
122.
P. B.
Louden
and
J. D.
Gezelter
, “
Why is ice slippery? Simulations of shear viscosity of the quasi-liquid layer on ice
,”
J. Phys. Chem. Lett.
9
,
3686
3691
(
2018
).
123.
H.
Bluhm
,
D. F.
Ogletree
,
C. S.
Fadley
,
Z.
Hussain
, and
M.
Salmeron
, “
The premelting of ice studied with photoelectron spectroscopy
,”
J. Phys.: Condens. Matter
14
,
L227
L233
(
2002
).
124.
V.
Sadtchenko
and
G. E.
Ewing
, “
Interfacial melting of thin ice films: An infrared study
,”
J. Chem. Phys.
116
,
4686
4697
(
2002
).
125.
J.
Gelman Constantin
,
M. M.
Gianetti
,
M. P.
Longinotti
, and
H. R.
Corti
, “
The quasi-liquid layer of ice revisited: The role of temperature gradients and tip chemistry in AFM studies
,”
Atmos. Chem. Phys.
18
,
14965
14978
(
2018
).
126.
T.
Mitsui
and
K.
Aoki
, “
Fluctuation spectroscopy of surface melting of ice with and without impurities
,”
Phys. Rev. E
99
,
010801
(
2019
).

Supplementary Material

You do not currently have access to this content.