Algebraic diagrammatic construction (ADC) theory is a computationally efficient and accurate approach for simulating electronic excitations in chemical systems. However, for the simulations of excited states in molecules with unpaired electrons, the performance of ADC methods can be affected by the spin contamination in unrestricted Hartree–Fock (UHF) reference wavefunctions. In this work, we benchmark the accuracy of ADC methods for electron attachment and ionization of open-shell molecules with the UHF reference orbitals (EA/IP-ADC/UHF) and develop an approach to quantify the spin contamination in charged excited states. Following this assessment, we demonstrate that the spin contamination can be reduced by combining EA/IP-ADC with the reference orbitals from restricted open-shell Hartree–Fock (ROHF) or orbital-optimized Møller–Plesset perturbation (OMP) theories. Our numerical results demonstrate that for open-shell systems with strong spin contamination in the UHF reference, the third-order EA/IP-ADC methods with the ROHF or OMP reference orbitals are similar in accuracy to equation-of-motion coupled cluster theory with single and double excitations.

1.
K.
Seki
,
Mol. Cryst. Liq. Cryst. Incorporating Nonlinear Opt.
171
,
255
(
1989
).
2.
J.
Li
,
G.
D’Avino
,
I.
Duchemin
,
D.
Beljonne
, and
X.
Blase
,
Phys. Rev. B
97
,
035108
(
2018
).
3.
B. W.
D’Andrade
,
S.
Datta
,
S. R.
Forrest
,
P.
Djurovich
,
E.
Polikarpov
, and
M. E.
Thompson
,
Org. Electron.
6
,
11
(
2005
).
4.
J. P.
Perdew
,
W.
Yang
,
K.
Burke
,
Z.
Yang
,
E. K. U.
Gross
,
M.
Scheffler
,
G. E.
Scuseria
,
T. M.
Henderson
,
I. Y.
Zhang
,
A.
Ruzsinszky
 et al.,
Proc. Natl. Acad. Sci. U. S. A.
114
,
2801
(
2017
).
5.
A.
Dittmer
,
R.
Izsák
,
F.
Neese
, and
D.
Maganas
,
Inorg. Chem.
58
,
9303
(
2019
).
6.
D.
Tripathi
and
A. K.
Dutta
,
J. Phys. Chem. A
123
,
10131
(
2019
).
7.
D. M.
Schultz
and
T. P.
Yoon
,
Science
343
,
1239176
(
2014
).
8.
T. J.
Wallington
,
M. D.
Hurley
,
J. M.
Fracheboud
,
J. J.
Orlando
,
G. S.
Tyndall
,
J.
Sehested
,
T. E.
Møgelberg
, and
O. J.
Nielsen
,
J. Phys. Chem.
100
,
18116
(
1996
).
9.
S.
Aloisio
and
J. S.
Francisco
,
Acc. Chem. Res.
33
,
825
(
2000
).
10.
G. S.
Tyndall
,
R. A.
Cox
,
C.
Granier
,
R.
Lesclaux
,
G. K.
Moortgat
,
M. J.
Pilling
,
A. R.
Ravishankara
, and
T. J.
Wallington
,
J. Geophys. Res.: Atmos.
106
,
12157
, (
2001
).
11.
D. R.
Glowacki
and
M. J.
Pilling
,
ChemPhysChem
11
,
3836
(
2010
).
12.
B. S.
Narendrapurapu
,
A. C.
Simmonett
,
H. F.
Schaefer
 III
,
J. A.
Miller
, and
S. J.
Klippenstein
,
J. Phys. Chem. A
115
,
14209
(
2011
).
13.
X.
Sun
,
C.
Zhang
,
Y.
Zhao
,
J.
Bai
,
Q.
Zhang
, and
W.
Wang
,
Environ. Sci. Technol.
46
,
8148
(
2012
).
15.
M. P.
Bertrand
,
Org. Prep. Proced. Int.
26
,
257
(
1994
).
16.
F.
Dénès
,
M.
Pichowicz
,
G.
Povie
, and
P.
Renaud
,
Chem. Rev.
114
,
2587
(
2014
).
17.
A.
Khamrai
and
V.
Ganesh
,
J. Chem. Sci.
133
,
5
(
2021
).
18.
J.
Lee
,
S.
Hong
,
Y.
Heo
,
H.
Kang
, and
M.
Kim
,
Dalton Trans.
50
,
14081
(
2021
).
19.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
2000
).
20.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
(
Cambridge University Press
,
Cambridge, UK
,
2009
).
21.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem.
44
,
55
(
1992
).
22.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
23.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem.
48
,
15
(
1993
).
24.
M.
Nooijen
and
J. G.
Snijders
,
J. Chem. Phys.
102
,
1681
(
1995
).
26.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
27.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
28.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
29.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
30.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
31.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
32.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
 III
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
33.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
138
,
184103
(
2013
).
34.
U.
Bozkaya
,
J. Chem. Phys.
139
,
104116
(
2013
).
35.
U.
Bozkaya
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
136
,
204114
(
2012
).
36.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
139
,
054104
(
2013
).
37.
A. Y.
Sokolov
,
A. C.
Simmonett
, and
H. F.
Schaefer
,
J. Chem. Phys.
138
,
024107
(
2013
).
38.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
(
1974
).
39.
P. E. M.
Siegbahn
,
J. Chem. Phys.
72
,
1647
(
1980
).
40.
H. J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
41.
D.
Mukherjee
,
R. K.
Moitra
, and
A.
Mukhopadhyay
,
Mol. Phys.
33
,
955
(
1977
).
42.
F. A.
Evangelista
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
127
,
024102
(
2007
).
43.
D.
Datta
,
L.
Kong
, and
M.
Nooijen
,
J. Chem. Phys.
134
,
214116
(
2011
).
44.
A.
Köhn
,
M.
Hanauer
,
L. A.
Mück
,
T.-C.
Jagau
, and
J.
Gauss
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
176
(
2013
).
45.
D.
Datta
and
M.
Nooijen
,
J. Chem. Phys.
137
,
204107
(
2012
).
46.
A.
Banerjee
,
R.
Shepard
, and
J.
Simons
,
Int. J. Quantum Chem.
14
,
389
(
1978
).
47.
J. A.
Nichols
,
D. L.
Yeager
, and
P.
Jørgensen
,
J. Chem. Phys.
80
,
293
(
1984
).
48.
V. F.
Khrustov
and
D. E.
Kostychev
,
Int. J. Quantum Chem.
88
,
507
(
2002
).
49.
K.
Chatterjee
and
A. Y.
Sokolov
,
J. Chem. Theory Comput.
15
,
5908
(
2019
).
50.
K.
Chatterjee
and
A. Y.
Sokolov
,
J. Chem. Theory Comput.
16
,
6343
(
2020
).
51.
C. E. V.
de Moura
and
A. Y.
Sokolov
,
Phys. Chem. Chem. Phys.
24
,
4769
(
2022
).
52.
J.
Schirmer
,
Phys. Rev. A
26
,
2395
(
1982
).
54.
F.
Mertins
and
J.
Schirmer
,
Phys. Rev. A
53
,
2140
(
1996
).
55.
J.
Schirmer
and
A. B.
Trofimov
,
J. Chem. Phys.
120
,
11449
(
2004
).
56.
A.
Dreuw
and
M.
Wormit
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
82
(
2014
).
57.
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
,
Phys. Rev. A
28
,
1237
(
1983
).
58.
J.
Schirmer
,
A. B.
Trofimov
, and
G.
Stelter
,
J. Chem. Phys.
109
,
4734
(
1998
).
59.
A. B.
Trofimov
and
J.
Schirmer
,
J. Chem. Phys.
123
,
144115
(
2005
).
60.
A. B.
Trofimov
and
J.
Schirmer
, in
Proceedings of 14th European Symposium on Gas Phase Electron Diffraction
(
Moscow State University
,
2011
), p.
77
.
61.
M.
Schneider
,
D. Y.
Soshnikov
,
D. M. P.
Holland
,
I.
Powis
,
E.
Antonsson
,
M.
Patanen
,
C.
Nicolas
,
C.
Miron
,
M.
Wormit
,
A.
Dreuw
, and
A. B.
Trofimov
,
J. Chem. Phys.
143
,
144103
(
2015
).
62.
A. L.
Dempwolff
,
M.
Schneider
,
M.
Hodecker
, and
A.
Dreuw
,
J. Chem. Phys.
150
,
064108
(
2019
).
63.
S.
Banerjee
and
A. Y.
Sokolov
,
J. Chem. Phys.
151
,
224112
(
2019
).
64.
A. L.
Dempwolff
,
A. C.
Paul
,
A. M.
Belogolova
,
A. B.
Trofimov
, and
A.
Dreuw
,
J. Chem. Phys.
152
,
024113
(
2020
).
65.
A. L.
Dempwolff
,
A. C.
Paul
,
A. M.
Belogolova
,
A. B.
Trofimov
, and
A.
Dreuw
,
J. Chem. Phys.
152
,
024125
(
2020
).
66.
J.
Liu
,
C.
Hättig
, and
S.
Höfener
,
J. Chem. Phys.
152
,
174109
(
2020
).
67.
S.
Banerjee
and
A. Y.
Sokolov
,
J. Chem. Phys.
154
,
074105
(
2021
).
68.
A. L.
Dempwolff
,
A. M.
Belogolova
,
A. B.
Trofimov
, and
A.
Dreuw
,
J. Chem. Phys.
154
,
104117
(
2021
).
69.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
32
,
179
(
1960
).
70.
J.
Lee
and
M.
Head-Gordon
,
J. Chem. Phys.
150
,
244106
(
2019
).
71.
L. W.
Bertels
,
J.
Lee
, and
M.
Head-Gordon
,
J. Phys. Chem. Lett.
10
,
4170
(
2019
).
72.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
73.
W.
Kurlancheek
and
M.
Head-Gordon
,
Mol. Phys.
107
,
1223
(
2009
).
74.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
Dover Publications
,
2003
).
75.
W. H.
Dickhoff
and
D.
Van Neck
,
Many-Body Theory Exposed!: Propagator Description of Quantum Mechanics in Many-Body Systems
(
World Scientific Publishing Co.
,
2005
).
76.
D.
Danovich
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
377
(
2011
).
77.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
111
,
9982
(
1999
).
78.
M. D.
Prasad
,
S.
Pal
, and
D.
Mukherjee
,
Phys. Rev. A
31
,
1287
(
1985
).
79.
D.
Mukherjee
and
W.
Kutzelnigg
,
Many-Body Methods in Quantum Chemistry
(
Springer
,
Berlin, Heidelberg
,
1989
), pp.
257
274
.
80.
A. Y.
Sokolov
,
J. Chem. Phys.
149
,
204113
(
2018
).
81.
I. M.
Mazin
and
A. Y.
Sokolov
,
J. Chem. Theory Comput.
17
,
6152
(
2021
).
82.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
83.
M.
Hodecker
,
A. L.
Dempwolff
,
J.
Schirmer
, and
A.
Dreuw
,
J. Chem. Phys.
156
,
074104
(
2022
).
84.
D.
Stück
and
M.
Head-Gordon
,
J. Chem. Phys.
139
,
244109
(
2013
).
85.
J. S.
Andrews
,
D.
Jayatilaka
,
R. G. A.
Bone
,
N. C.
Handy
, and
R. D.
Amos
,
Chem. Phys. Lett.
183
,
423
(
1991
).
86.
A. I.
Krylov
,
Rev. Comput. Chem.
30
,
151
(
2017
).
87.
M.-P.
Kitsaras
and
S.
Stopkowicz
,
J. Chem. Phys.
154
,
131101
(
2021
).
88.
J.
Kouba
and
Y.
Öhrn
,
Int. J. Quantum Chem.
3
,
513
(
1969
).
89.
G. D.
Purvis
,
H.
Sekino
, and
R. J.
Bartlett
,
Collect. Czech. Chem. Commun.
53
,
2203
(
1988
).
90.
J. F.
Stanton
,
J. Chem. Phys.
101
,
371
(
1994
).
91.
A. I.
Krylov
,
J. Chem. Phys.
113
,
6052
(
2000
).
92.
S.
Knippenberg
,
D. R.
Rehn
,
M.
Wormit
,
J. H.
Starcke
,
I. L.
Rusakova
,
A. B.
Trofimov
, and
A.
Dreuw
,
J. Chem. Phys.
136
,
064107
(
2012
).
93.
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
,
J. Chem. Phys.
141
,
024106
(
2014
).
94.
F.
Plasser
,
S. A.
Bäppler
,
M.
Wormit
, and
A.
Dreuw
,
J. Chem. Phys.
141
,
024107
(
2014
).
95.
P. J.
Knowles
,
J. S.
Andrews
,
R. D.
Amos
,
N. C.
Handy
, and
J. A.
Pople
,
Chem. Phys. Lett.
186
,
130
(
1991
).
96.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
4389
(
2014
).
97.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
11
,
1564
(
2015
).
98.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
 et al.,
J. Chem. Phys.
153
,
024109
(
2020
).
99.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
 et al.,
J. Chem. Phys.
155
,
084801
(
2021
).
100.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
101.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
102.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
103.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
104.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
 et al.,
Mol. Phys.
113
,
184
(
2015
).
105.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
152
,
214108
(
2020
).
106.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
1452
(
2013
).
107.
See http://osc.edu/ark:/19495/f5s1ph73 for Ohio Supercomputer Center
.

Supplementary Material

You do not currently have access to this content.