Hydrazoic acid (HN3) is used as a case study for investigating the accuracy and precision by which a molecular structure—specifically, a semi-experimental equilibrium structure (reSE)—may be determined using current state-of-the-art methodology. The influence of the theoretical corrections for effects of vibration–rotation coupling and electron-mass distribution that are employed in the analysis is explored in detail. The small size of HN3 allowed us to deploy considerable computational resources to probe the basis-set dependence of these corrections using a series of coupled-cluster single, double, perturbative triple [CCSD(T)] calculations with cc-pCVXZ (X = D, T, Q, 5) basis sets. We extrapolated the resulting corrections to the complete basis set (CBS) limit to obtain CCSD(T)/CBS corrections, which were used in a subsequent reSE structure determination. The reSE parameters obtained using the CCSD(T)/cc-pCV5Z corrections are nearly identical to those obtained using the CCSD(T)/CBS corrections, with uncertainties in the bond distances and angles of less than 0.0006 Å and 0.08°, respectively. The previously obtained reSE structure using CCSD(T)/ANO2 agrees with that using CCSD(T)/cc-pCV5Z to within 0.000 08 Å and 0.016° for bond distances and angles, respectively, and with only 25% larger uncertainties, validating the idea that reSE structure determinations can be carried out with significantly smaller basis sets than those needed for similarly accurate, strictly ab initio determinations. Although the purely computational re structural parameters [CCSD(T)/cc-pCV6Z] fall outside of the statistical uncertainties (2σ) of the corresponding reSE structural parameters, the discrepancy is rectified by applying corrections to address the theoretical limitations of the CCSD(T)/cc-pCV6Z geometry with respect to basis set, electron correlation, relativity, and the Born–Oppenheimer approximation, thereby supporting the contention that the semi-experimental approach is both an accurate and vastly more efficient method for structure determinations than is brute-force computation.

1.
Z. N.
Heim
,
B. K.
Amberger
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Molecular structure determination: Equilibrium structure of pyrimidine (m-C4H4N2) from rotational spectroscopy (reSE) and high-level ab initio calculation (re) agree within the uncertainty of experimental measurement
,”
J. Chem. Phys.
152
,
104303
(
2020
).
2.
V. L.
Orr
,
Y.
Ichikawa
,
A. R.
Patel
,
S. M.
Kougias
,
K.
Kobayashi
,
J. F.
Stanton
,
B. J.
Esselman
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structure determination of thiophene (c-C4H4S) by rotational spectroscopy—Structure of a five-membered heterocycle containing a third-row atom
,”
J. Chem. Phys.
154
,
244310
(
2021
).
3.
B. J.
Esselman
,
M. A.
Zdanovskaia
,
A. N.
Owen
,
J. F.
Stanton
, and
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structure determination of thiazole (c-C3H3NS) from twenty-four isotopologues
,”
J. Chem. Phys.
155
,
054302
(
2021
).
4.
A. N.
Owen
,
M. A.
Zdanovskaia
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Semi-experimental equilibrium (reSE) and theoretical structures of pyridazine (o-C4H4N2)
,”
J. Phys. Chem. A
125
,
7976
7987
(
2021
).
5.
B. K.
Amberger
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structure determination of hydrazoic acid (HN3) by millimeter-wave spectroscopy
,”
J. Chem. Phys.
143
,
104310
(
2015
).
6.
K.
Vávra
,
P.
Kania
,
J.
Koucký
,
Z.
Kisiel
, and
Š.
Urban
, “
Rotational spectra of hydrazoic acid
,”
J. Mol. Spectrosc.
337
,
27
31
(
2017
).
7.
G.
Herzberg
,
F.
Patat
, and
H.
Verleger
, “
Über die geometrische struktur des N3H-moleküls
,”
Z. Electrochem.
41
,
522
524
(
1935
).
8.
E. H.
Eyster
, “
The rotational structure of the hydrazoic acid bands in the photographic infra-red
,”
J. Chem. Phys.
8
,
135
142
(
1940
).
9.
V.
Schomaker
and
R.
Spurr
, “
The structures of nitrous oxide and of hydrogen azide
,”
J. Am. Chem. Soc.
64
,
1184
1187
(
1942
).
10.
E.
Amble
and
B. P.
Dailey
, “
The structure and dipole moment of hydrazoic acid
,”
J. Chem. Phys.
18
,
1422
(
1950
).
11.
M.
Winnewisser
and
R. L.
Cook
, “
Centrifugal distortion effects and structure of hydrazoic acid from the millimeter wave rotational spectra
,”
J. Chem. Phys.
41
,
999
1004
(
1964
).
12.
J.
Bendtsen
and
M.
Winnewisser
, “
Ground state spectroscopic constants and dipole moment of hydrazoic acid, H14N3
,”
Chem. Phys. Lett.
33
,
141
145
(
1975
).
13.
J.
Bendtsen
and
M.
Winnewisser
, “
Absorption spectrum of deuterated hydrazoic acid, D14N3 in the microwave and millimeterwave region
,”
Chem. Phys.
40
,
359
365
(
1979
).
14.
J.
Bendtsen
, “
Raman spectrum of the v2 band of H14N3
,”
J. Raman Spectrosc.
9
,
162
165
(
1980
).
15.
B. P.
Winnewisser
, “
The substitution structure of hydrazoic acid, HNNN
,”
J. Mol. Spectrosc.
82
,
220
223
(
1980
).
16.
J.
Evers
,
M.
Göbel
,
B.
Krumm
,
F.
Martin
,
S.
Medvedyev
,
G.
Oehlinger
,
F. X.
Steemann
,
I.
Troyan
,
T. M.
Klapötke
, and
M. I.
Eremets
, “
Molecular structure of hydrazoic acid with hydrogen-bonded tetramers in nearly planar layers
,”
J. Am. Chem. Soc.
133
,
12100
12105
(
2011
).
17.
J.
Evers
,
G.
Oehlinger
,
F. X.
Steemann
, and
T. M.
Klapötke
, “
Molecular structure of hydrazoic acid from 55 K to close to the melting point determined with synchrotron radiation
,”
Inorg. Chem.
59
,
17671
17677
(
2020
).
18.
S. W.
Harrison
,
C. R.
Fischer
, and
P. J.
Kemmey
, “
Calculation of the equilibrium conformation of HN3
,”
Chem. Phys. Lett.
36
,
229
231
(
1975
).
19.
J.
Lievin
,
J.
Breulet
, and
G.
Verhaegen
, “
Ab initio study of hydrazoic acid
,”
Theor. Chim. Acta
52
,
75
88
(
1979
).
20.
A.
Sevin
,
J. P.
Le Roux
,
B.
Bigot
, and
A.
Devaquet
, “
Theoretical ab initio SCF-CI study of the photochemical behavior of HN3 and related species
,”
Chem. Phys.
45
,
305
314
(
1980
).
21.
W.
Gordy
and
R.
Cook
,
Microwave Molecular Spectra
, 3rd. ed. (
Wiley-Interscience
,
New York
,
1984
), Vol. 18.
22.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
, “
Coupled-cluster methods including noniterative corrections for quadruple excitations
,”
J. Chem. Phys.
123
,
054101
(
2005
).
23.
L.
Cheng
and
J.
Gauss
, “
Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian
,”
J. Chem. Phys.
135
,
084114
(
2011
).
24.
W.
Liu
and
D.
Peng
, “
Exact two-component Hamiltonians revisited
,”
J. Chem. Phys.
131
,
031104
(
2009
).
25.
K. G.
Dyall
, “
Interfacing relativistic and nonrelativistic methods. IV. One- and two-electron scalar approximations
,”
J. Chem. Phys.
115
,
9136
9143
(
2001
).
26.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F.
Schaefer
, “
The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet-triplet splitting of CH2 and other molecular effects
,”
J. Chem. Phys.
84
,
4481
4484
(
1986
).
27.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
New York
,
1956
).
28.
J. F.
Stanton
,
J.
Gauss
, and
O.
Christiansen
, “
Equilibrium geometries of cyclic SiC3 isomers
,”
J. Chem. Phys.
114
,
2993
2995
(
2001
).
29.
J. F.
Stanton
, “
Why CCSD(T) works: A different perspective
,”
Chem. Phys. Lett.
281
,
130
134
(
1997
).
30.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
352
(
2007
).
31.

The CCSD(T)/cc-pCV5Z optimized parameters of hydrazoic acid reported in Table VI and Fig. 3 of Ref. 5 are incorrect; specifically, they are inconsistent with the CCSD(T)/cc-pCV5Z optimization output file in the supplementary material of that same work. The values that are present in the output file of that supplementary material were replicated in this work, and all references and comparisons herein involving the previous CCSD(T)/cc-pCV5Z refer to these correct CCSD(T)/cc-pCV5Z values.

32.

The use of the word “worst” here refers to the degree to which information provided by the isotopologue in question is consistent with the information provided by the other isotopologues in the dataset and does not necessarily reflect the quality of the spectroscopic data or computed corrections for that isotopologue. As seen in pyridazine,4 the inclusion of the final isotopologue resulted in a dramatic increase in the δreSE but was required for accurate determination of several parameters.

Supplementary Material

You do not currently have access to this content.