Bubble solutions are of growing interest because of their various technological applications in surface cleaning, water treatment, and agriculture. However, their physicochemical properties, such as the stability and interfacial charge of bubbles, are not fully understood yet. In this study, the kinetics of radii in aqueous microbubble solutions are experimentally investigated, and the results are discussed in the context of Ostwald ripening. The obtained distributions of bubble radii scaled by mean radius and total number were found to be time-independent during the observation period. Image analysis of radii kinetics revealed that the average growth and shrinkage speed of each bubble is governed by diffusion-limited Ostwald ripening, and the kinetic coefficient calculated using the available physicochemical constants in the literature quantitatively agrees with the experimental data. Furthermore, the cube of mean radius and mean volume exhibit a linear time evolution in agreement with the Lifshitz–Slezov–Wagner (LSW) theory. The coefficients are slightly larger than those predicted using the LSW theory, which can be qualitatively explained by the effect of finite volume fraction. Finally, the slowdown and pinning of radius in the shrinkage dynamics of small microbubbles are discussed in detail.

1.
M.
Alheshibri
,
J.
Qian
,
M.
Jehannin
, and
V. S. J.
Craig
, “
A history of nanobubbles
,”
Langmuir
32
,
11086
11100
(
2016
).
2.
F.
Eklund
and
J.
Swenson
, “
Stable air nanobubbles in water: The importance of organic contaminants
,”
Langmuir
34
,
11003
11009
(
2018
).
3.
L.
Zhou
,
S.
Wang
,
L.
Zhang
, and
J.
Hu
, “
Generation and stability of bulk nanobubbles: A review and perspective
,”
Curr. Opin. Colloid Interface Sci.
53
,
101439
(
2021
).
4.
L.
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
34
,
94
98
(
1917
).
5.
M. S.
Plesset
, “
The dynamics of cavitation bubbles
,”
J. Appl. Mech.
16
,
277
282
(
1949
).
6.
P. S.
Epstein
and
M. S.
Plesset
, “
On the stability of gas bubbles in liquid-gas solutions
,”
J. Chem. Phys.
18
,
1505
1509
(
1950
).
7.
M. S.
Plesset
and
S. S.
Sadhal
, “
On the stability of gas bubbles in liquid-gas solutions
,” in
Mechanics and Physics of Bubbles in Liquids
, edited by
L.
van Wijngaarden
(
Springer
,
Dordrecht, The Netherlands
,
1982
), pp.
133
141
.
8.
P. B.
Duncan
and
D.
Needham
, “
Test of the Epstein–Plesset model for gas microparticle dissolution in aqueous media: Effect of surface tension and gas undersaturation in solution
,”
Langmuir
20
,
2567
2578
(
2004
).
9.
S.
Kentish
,
J.
Lee
,
M.
Davidson
, and
M.
Ashokkumar
, “
The dissolution of a stationary spherical bubble beneath a flat plate
,”
Chem. Eng. Sci.
61
,
7697
7705
(
2006
).
10.
J.-Y.
Kim
,
M.-G.
Song
, and
J.-D.
Kim
, “
Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions
,”
J. Colloid Interface Sci.
223
,
285
291
(
2000
).
11.
F. Y.
Ushikubo
,
T.
Furukawa
,
R.
Nakagawa
,
M.
Enari
,
Y.
Makino
,
Y.
Kawagoe
,
T.
Shiina
, and
S.
Oshita
, “
Evidence of the existence and the stability of nano-bubbles in water
,”
Colloids Surf., A
361
,
31
37
(
2010
).
12.
J.
Qiu
,
Z.
Zou
,
S.
Wang
,
X.
Wang
,
L.
Wang
,
Y.
Dong
,
H.
Zhao
,
L.
Zhang
, and
J.
Hu
, “
Formation and stability of bulk nanobubbles generated by ethanol-water exchange
,”
ChemPhysChem
18
,
1345
1350
(
2017
).
13.
J.
Jin
,
Z.
Feng
,
F.
Yang
, and
N.
Gu
, “
Bulk nanobubbles fabricated by repeated compression of microbubbles
,”
Langmuir
35
,
4238
4245
(
2019
).
14.
W. A.
Ducker
, “
Contact angle and stability of interfacial nanobubbles
,”
Langmuir
25
,
8907
8910
(
2009
).
15.
B. H.
Tan
,
H.
An
, and
C.-D.
Ohl
, “
How bulk nanobubbles might survive
,”
Phys. Rev. Lett.
124
,
134503
(
2020
).
16.
P. A.
Satpute
and
J. C.
Earthman
, “
Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage
,”
J. Colloid Interface Sci.
584
,
449
455
(
2021
).
17.
B.
Dollet
and
D.
Lohse
, “
Pinning stabilizes neighboring surface nanobubbles against Ostwald ripening
,”
Langmuir
32
,
11335
11339
(
2016
).
18.
S.
Michelin
,
E.
Guérin
, and
E.
Lauga
, “
Collective dissolution of microbubbles
,”
Phys. Rev. Fluids
3
,
043601
(
2018
).
19.
X.
Zhu
,
R.
Verzicco
,
X.
Zhang
, and
D.
Lohse
, “
Diffusive interaction of multiple surface nanobubbles: Shrinkage, growth, and coarsening
,”
Soft Matter
14
,
2006
2014
(
2018
).
20.
W.
Ostwald
, “
Studien über die bildung und umwandlung fester körper. 1. Abhandlung: Übersättigung und überkaltung
,”
Z. Phys. Chem.
22U
,
289
330
(
1897
).
21.
A.
Onuki
,
Phase Transition Dynamics
(
Cambridge University Press
,
2007
).
22.
R.
Shimizu
and
H.
Tanaka
, “
A novel coarsening mechanism of droplets in immiscible fluid mixtures
,”
Nat. Commun.
6
,
7407
(
2015
).
23.
P. K.
Rastogi
and
A. J.
Ardell
, “
The coarsening behavior of the γ′ precipitate in nickel-silicon alloys
,”
Acta Metall.
19
,
321
330
(
1971
).
24.
D. H.
Jack
and
R. W. K.
Honeycombe
, “
Age hardening of an Fe-Ti-Si alloy
,”
Acta Metall.
20
,
787
796
(
1972
).
25.
T.
Hirata
and
D. H.
Kirkwood
, “
The prediction and measurement of precipitate number densities in a nickel-6.05 wt.% aluminium alloy
,”
Acta Metall.
25
,
1425
1434
(
1977
).
26.
Y.
Seno
,
Y.
Tomokiyo
,
K.
Oki
, and
T.
Eguchi
, “
Coarsening process of Co precipitates in Cu–Co alloys
,”
Trans. Jpn. Inst. Met.
24
,
491
498
(
1983
).
27.
N. C.
Lautze
,
T. W.
Sisson
,
M. T.
Mangan
, and
T. L.
Grove
, “
Segregating gas from melt: An experimental study of the Ostwald ripening of vapor bubbles in magmas
,”
Contrib. Mineral. Petrol.
161
,
331
347
(
2011
).
28.
A. S.
Kabalnov
,
A. V.
Pertzov
, and
E. D.
Shchukin
, “
Ostwald ripening in emulsions: I. Direct observations of Ostwald ripening in emulsions
,”
J. Colloid Interface Sci.
118
,
590
(
1987
).
29.
J.
Weiss
,
N.
Herrmann
, and
D. J.
McClements
, “
Ostwald ripening of hydrocarbon emulsion droplets in surfactant solutions
,”
Langmuir
15
,
6652
6657
(
1999
).
30.
T.
Sakai
,
K.
Kamogawa
,
K.
Nishiyama
,
H.
Sakai
, and
M.
Abe
, “
Molecular diffusion of oil/water emulsions in surfactant-free conditions
,”
Langmuir
18
,
1985
1990
(
2002
).
31.
P.
Taylor
, “
Ostwald ripening in emulsions: Estimation of solution thermodynamics of the disperse phase
,”
Adv. Colloid Interface Sci.
106
,
261
285
(
2003
).
32.
S.
Mun
and
D. J.
McClements
, “
Influence of interfacial characteristics on Ostwald ripening in hydrocarbon oil-in-water emulsions
,”
Langmuir
22
,
1551
1554
(
2006
).
33.
S.
Ariyaprakai
and
S. R.
Dungan
, “
Influence of surfactant structure on the contribution of micelles to Ostwald ripening in oil-in-water emulsions
,”
J. Colloid Interface Sci.
343
,
102
108
(
2010
).
34.
I. M.
Lifshitz
and
V. V.
Slyozov
, “
Kinetics of diffusive decomposition of supersaturated solid solutions
,”
J. Exp. Theor. Phys.
8
,
331
(
1959
).
35.
I. M.
Lifshitz
and
V. V.
Slyozov
, “
The kinetics of precipitation from supersaturated solid solutions
,”
J. Phys. Chem. Solids
19
,
35
(
1961
).
36.
C.
Wagner
, “
Theorie der alterung von niederschlägen durch umlösen (Ostwald-Reifung)
,”
Z. Elektrochem., Ber. Bunsengesellschaft Phys. Chem.
65
,
581
591
(
1961
).
37.
D. V.
Alexandrov
, “
Kinetics of diffusive decomposition in the case of several mass transfer mechanisms
,”
J. Cryst. Growth
457
,
11
18
(
2017
).
38.
P. W.
Voorhees
, “
The theory of Ostwald ripening
,”
J. Stat. Phys.
38
,
231
252
(
1985
).
39.
M.
Marder
, “
Correlations and droplet growth
,”
Phys. Rev. Lett.
55
,
2953
2956
(
1985
).
40.
M.
Marder
, “
Correlations and Ostwald ripening
,”
Phys. Rev. A
36
,
858
874
(
1987
).
41.
A.
Baldan
, “
Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories
,”
J. Mater. Sci.
37
,
2171
2202
(
2002
).
42.
A. J.
Ardell
, “
The effect of volume fraction on particle coarsening: Theoretical considerations
,”
Acta Metall.
20
,
61
71
(
1972
).
43.
A. D.
Brailsford
and
P.
Wynblatt
, “
The dependence of Ostwald ripening kinetics on particle volume fraction
,”
Acta Metall.
27
,
489
497
(
1979
).
44.
K.
Tsumuraya
and
Y.
Miyata
, “
Coarsening models incorporating both diffusion geometry and volume fraction of particles
,”
Acta Metall.
31
,
437
452
(
1983
).
45.
J. A.
Marqusee
and
J.
Ross
, “
Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction
,”
J. Chem. Phys.
80
,
536
(
1984
).
46.
Y.
Enomoto
,
M.
Tokuyama
, and
K.
Kawasaki
, “
Finite volume fraction effects on Ostwald ripening
,”
Acta Metall.
34
,
2119
2128
(
1986
).
47.
J. H.
Yao
,
K. R.
Elder
,
H.
Guo
, and
M.
Grant
, “
Theory and simulation of Ostwald ripening
,”
Phys. Rev. B
47
,
14110
14125
(
1993
).
48.
J. H.
Yao
,
K. R.
Elder
,
H.
Guo
, and
M.
Grant
, “
Late stage droplet growth
,”
Physica A
204
,
770
788
(
1994
).
49.
J.
Schmelzer
and
F.
Schweitzer
, “
Ostwald ripening of bubbles in liquid-gas solutions
,”
J. Non-Equilib. Thermodyn.
12
,
255
270
(
1987
).
50.
V. V.
Slezov
,
A. S.
Abyzov
, and
Z. V.
Slezova
, “
Kinetics of the phase separation of a low-viscosity liquid supersaturated with gas at the intermediate and later stages
,”
Colloid J.
67
,
85
96
(
2005
).
51.
H.
Watanabe
,
M.
Suzuki
,
H.
Inaoka
, and
N.
Ito
, “
Ostwald ripening in multiple-bubble nuclei
,”
J. Chem. Phys.
141
,
234703
(
2014
).
52.
H.
Watanabe
,
H.
Inaoka
, and
N.
Ito
, “
Ripening kinetics of bubbles: A molecular dynamics study
,”
J. Chem. Phys.
145
,
124707
(
2016
).
53.
O. D.
Cima
,
C.
Rocha
,
A.
Teixeira
, and
B.
Wienke
, “
Ostwald ripening for air bubbles and decompression illness: Phenomenological aspects
,” arXiv 1806.05673v1 (
2018
).
54.
C. M. d.
Rocha
, “
Evolution of air bubbles in glycerol/water mixtures by Ostwald ripening
,” Ph.D. thesis,
Universidade Federal de Viçosa
,
2018
.
55.
Y.
Uematsu
,
D. J.
Bonthuis
, and
R. R.
Netz
, “
Nanomolar surface-active charged impurities account for the zeta potential of hydrophobic surfaces
,”
Langmuir
36
,
3645
3658
(
2020
).
56.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena
(
Springer
,
New York
,
2004
).
57.
Y.
Marcus
,
Ions in Solution and Their Solvation
(
John Wiley & Sons, Inc.
,
2015
).
58.
R.
Battino
,
T. R.
Rettich
, and
T.
Tominaga
, “
The solubility of nitrogen and air in liquids
,”
J. Phys. Chem. Ref. Data
13
,
563
600
(
1984
).
59.
B.
Giron
,
B.
Meerson
, and
P. V.
Sasorov
, “
Weak selection and stability of localized distributions in Ostwald ripening
,”
Phys. Rev. E
58
,
4213
4216
(
1998
).
60.
B.
Meerson
, “
Fluctuations provide strong selection in Ostwald ripening
,”
Phys. Rev. E
60
,
3072
3075
(
1999
).
61.
L.
Liebermann
, “
Air bubbles in water
,”
J. Appl. Phys.
28
,
205
211
(
1957
).
62.
W.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2016
).
63.
R.
Sander
, “
Compilation of Henry’s law constants (version 4.0) for water as solvent
,”
Atmos. Chem. Phys.
15
,
4399
4981
(
2015
).
64.
Y.
Uematsu
,
D. J.
Bonthuis
, and
R. R.
Netz
, “
Charged surface-active impurities at nanomolar concentration induce Jones–Ray effect
,”
J. Phys. Chem. Lett.
9
,
189
193
(
2017
).
You do not currently have access to this content.