We investigate the structural relaxation of a soft-sphere liquid quenched isochorically (ϕ = 0.7) and instantaneously to different temperatures Tf above and below the glass transition. For this, we combine extensive Brownian dynamics simulations and theoretical calculations based on the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory. The response of the liquid to a quench generally consists of a sub-linear increase of the α-relaxation time with system’s age. Approaching the ideal glass-transition temperature from above (Tf > Ta), sub-aging appears as a transient process describing a broad equilibration crossover for quenches to nearly arrested states. This allows us to empirically determine an equilibration timescale teq(Tf) that becomes increasingly longer as Tf approaches Ta. For quenches inside the glass (TfTa), the growth rate of the structural relaxation time becomes progressively larger as Tf decreases and, unlike the equilibration scenario, τα remains evolving within the whole observation time-window. These features are consistently found in theory and simulations with remarkable semi-quantitative agreement and coincide with those revealed in a previous and complementary study [P. Mendoza-Méndez et al., Phys. Rev. 96, 022608 (2017)] that considered a sequence of quenches with fixed final temperature Tf = 0 but increasing ϕ toward the hard-sphere dynamical arrest volume fraction ϕHSa=0.582. The NE-SCGLE analysis, however, unveils various fundamental aspects of the glass transition, involving the abrupt passage from the ordinary equilibration scenario to the persistent aging effects that are characteristic of glass-forming liquids. The theory also explains that, within the time window of any experimental observation, this can only be observed as a continuous crossover.

1.
L.
Cipelletti
and
L.
Ramos
,
J. Phys.: Condens. Matter
17
,
R253
R285
(
2005
).
2.
P.
Lunkenheimer
,
R.
Wehn
,
U.
Schneider
, and
A.
Loidl
,
Phys. Rev. Lett.
95
,
055702
(
2002
).
3.
T.
Hecksher
,
N. B.
Olsenb
,
K.
Nissc
, and
J. C.
Dyre
,
J. Chem. Phys.
133
,
174514
(
2010
).
4.
L.
Cipelletti
,
L.
Ramos
,
S.
Manley
,
E.
Pitard
,
D. A.
Weitz
,
E. E.
Pashkovski
, and
M.
Johansson
,
Faraday Discuss.
123
,
237
(
2003
).
5.
X.
Di
,
K. Z.
Win
,
G. B.
McKenna
,
T.
Narita
,
F.
Lequeux
,
S. R.
Pullela
, and
Z.
Cheng
,
Phys. Rev. Lett.
106
,
095701
(
2011
).
6.
R.
Bandyopadhyay
,
D.
Liang
,
H.
Yardimci
,
D. A.
Sessoms
,
M. A.
Borthwick
,
S. G. J.
Mochrie
,
J. L.
Harden
, and
R. L.
Leheny
,
Phys. Rev. Lett.
93
,
228302
(
2004
).
7.
H.
Bissig
,
S.
Romer
,
L.
Cipelletti
,
V.
Trappe
, and
P.
Schurtenberger
,
Phys. Chem. Commun.
6
,
21
(
2003
).
8.
J. M.
Hutchinson
,
Prog. Polym. Sci.
20
(
4
),
703
760
(
1995
).
9.
L.
Bellon
,
S.
Ciliberto
, and
C.
Laroche
,
Europhys. Lett.
51
,
551
(
2000
).
10.
A.
Das
,
P. M.
Derlet
,
C.
Liu
,
E. M.
Dufresne
, and
R.
Maaß
,
Nat. Commun.
10
,
5006
(
2019
).
11.
B.
Ruta
,
G.
Baldi
,
G.
Monaco
, and
Y.
Chushkin
,
J. Chem. Phys.
138
,
054508
(
2012
).
12.
A.
Knaebel
,
M.
Bellour
,
J. P.
Munch
,
V.
Viasnoff
,
F.
Lequeux
, and
J. L.
Harden
,
Europhys. Lett.
52
,
73
(
2000
).
13.
B.
Ruzicka
,
E.
Zaccarelli
,
L.
Zulian
,
R.
Angelini
,
M.
Sztucki
,
A.
Moussaid
,
T.
Naryanan
, and
F.
Sciortino
,
Nat. Mater.
10
,
56
60
(
2011
).
14.
R.
Angelini
 et al.,
Nat. Commun.
5
,
4049
(
2014
).
15.
L.
Cipelletti
,
S.
Manley
,
R. C.
Ball
, and
D. A.
Weitz
,
Phys. Rev. Lett.
84
,
2275
(
2000
).
16.
A.
Jain
,
F.
Schulz
,
I.
Lokteva
,
L.
Frenzel
,
G.
Grübel
, and
F.
Lehmkühler
,
Soft Matter
16
,
2864
2872
(
2020
).
17.
M. B.
Gordon
,
C. J.
Kloxin
, and
N. J.
Wagner
,
J. Rheol.
61
,
23
(
2017
).
18.
A. R.
Jacob
,
E.
Moghimi
, and
G.
Petekidis
,
Phys. Fluids
31
,
087103
(
2019
).
19.
D.
Bonn
,
H.
Tanaka
,
G.
Wegdam
,
H.
Kellay
, and
J.
Meunier
,
Europhys. Lett.
45
(
1
),
52
57
(
1999
).
20.
B.
Abou
,
D.
Bonn
, and
J.
Meunier
,
Phys. Rev. E
64
,
021510
(
2001
).
21.
D.
El Masri
,
M.
Pierno
,
L.
Berthier
, and
L.
Cipelletti
,
J. Phys.: Condens. Matter
17
,
S3543
(
2005
).
22.
V. A.
Martinez
,
G.
Bryant
, and
W.
van Megen
,
Phys. Rev. Lett.
101
,
135702
(
2008
).
23.
E.
Sanz
 et al.,
J. Phys. Chem. B
112
,
10861
(
2008
).
24.
25.
W.
Kob
and
J.-L.
Barrat
,
Phys. Rev. Lett.
78
,
4581
(
1997
).
26.
G.
Foffi
,
E.
Zaccarelli
,
S.
Buldyrev
,
F.
Sciortino
, and
P.
Tartaglia
,
J. Chem. Phys.
120
,
8824
(
2004
).
27.
A. M.
Puertas
,
J. Phys.: Condens. Matter
22
,
104121
(
2010
).
28.
M.
Warren
and
J.
Rottler
,
Phys. Rev. Lett.
110
,
025501
(
2013
).
29.
P.
De Gregorio
 et al.,
Physica A
307
,
15
(
2002
).
30.
L. F.
Cugliandolo
and
J.
Kurchan
,
Phys. Rev. Lett.
71
,
173
(
1993
).
31.
A.
Latz
,
J. Phys.: Condens. Matter
12
,
6353
6363
(
2000
).
32.
33.
B.
Kim
and
A.
Latz
,
Europhys. Lett.
53
,
660
(
2001
).
34.
W.
Götze
, in
Liquids, Freezing and Glass Transition
, edited by
J. P.
Hansen
,
D.
Levesque
, and
J.
Zinn-Justin
(
North-Holland
,
Amsterdam
,
1991
).
35.
W.
Götze
and
L.
Sjögren
,
Rep. Prog. Phys.
55
,
241
(
1992
).
36.
W.
Götze
and
E.
Leutheusser
,
Phys. Rev. A
11
,
2173
(
1975
).
37.
W.
Götze
,
E.
Leutheusser
, and
S.
Yip
,
Phys. Rev. A
23
,
2634
(
1981
).
38.
L.
Yeomans-Reyna
and
M.
Medina-Noyola
,
Phys. Rev. E
64
,
066114
(
2001
).
39.
L.
Yeomans-Reyna
,
H.
Acuña-Campa
,
F.
Guevara-Rodríguez
, and
M.
Medina-Noyola
,
Phys. Rev. E
67
,
021108
(
2003
).
40.
R.
Juárez-Maldonado
 et al.,
Phys. Rev. E
76
,
062502
(
2007
).
41.
M. A.
Chávez-Rojo
and
M.
Medina-Noyola
,
Physica A
366
,
55
(
2006
).
42.
M. A.
Chávez-Rojo
and
M.
Medina-Noyola
,
Phys. Rev. E
72
,
031107
(
2005
);
M. A.
Chávez-Rojo
and
M.
Medina-Noyola
,
Phys. Rev. Eibid.
76
,
039902
(
2007
).
43.
L.
Yeomans-Reyna
,
M. A.
Chávez-Rojo
,
P. E.
Ramírez-González
,
R.
Juárez-Maldonado
,
M.
Chávez-Páez
, and
M.
Medina-Noyola
,
Phys. Rev. E
76
,
041504
(
2007
).
44.
R.
Juárez-Maldonado
and
M.
Medina-Noyola
,
Phys. Rev. E
77
,
051503
(
2008
).
45.
L. E.
Sánchez-Díaz
,
A.
Vizcarra-Rendón
, and
R.
Juárez-Maldonado
,
Phys. Rev. Lett.
103
,
035701
(
2009
).
46.
L. F.
Elizondo-Aguilera
and
Th.
Voigtmann
,
Phys. Rev. E
100
,
042601
(
2019
).
47.
P. E.
Ramírez-González
and
M.
Medina-Noyola
,
Phys. Rev. E
82
,
061503
(
2010
).
48.
P. E.
Ramírez-González
and
M.
Medina-Noyola
,
Phys. Rev. E
82
,
061504
(
2010
).
49.
L. E.
Sánchez-Díaz
,
P. E.
Ramírez-González
, and
M.
Medina-Noyola
,
Phys. Rev. E
87
,
052306
(
2013
).
50.
G.
Perez
 et al.,
Phys. Rev. E
83
,
060501(R)
(
2011
).
51.
P.
Mendoza-Méndez
,
E.
Lázaro-Lázaro
,
L. E.
Sánchez-Díaz
,
P. E.
Ramírez-González
,
G.
Pérez-Ángel
, and
M.
Medina-Noyola
,
Phys. Rev. E
96
,
022608
(
2017
).
52.
J. M.
Olais-Govea
,
L.
López-Flores
, and
M.
Medina-Noyola
,
J. Chem. Phys.
143
,
174505
(
2015
).
53.
J. M.
Olais-Govea
,
L.
López-Flores
, and
M.
Medina-Noyola
,
Phys. Rev. E
98
,
040601(R)
(
2018
).
54.
J. M.
Olais-Govea
,
B.
Zepeda-López
,
L.
López-Flores
, and
M.
Medina-Noyola
,
Sci. Rep.
9
,
16445
(
2015
).
55.
J. B.
Zepeda-López
and
M.
Medina-Noyola
,
J. Chem. Phys.
154
,
174901
(
2021
).
56.
G.
Brambilla
,
D.
El Masri
,
M.
Pierno
,
L.
Berthier
,
L.
Cipelletti
,
G.
Petekidis
, and
A. B.
Schofield
,
Phys. Rev. Lett.
102
,
085703
(
2009
).
57.
D.
El Masri
,
G.
Brambilla
,
M.
Pierno
,
G.
Petekidis
,
A. B.
Schofield
,
L.
Berthier
, and
L.
Cipelletti
,
J. Stat. Mech.: Theory Exp.
2009
,
P07015
.
58.
D. A.
Sessoms
,
I.
Bischofberger
,
L.
Cipelletti
, and
V.
Trappe
,
Philos. Trans. R. Soc., A
367
,
5013
(
2009
).
59.
R.
Rivas-Barbosa
,
E.
Lázaro-Lázaro
,
P.
Mendoza-Méndez
,
T.
Still
,
V.
Piazza
,
P. E.
Ramıírez-González
,
M.
Medina-Noyola
, and
M.
Laurati
,
Soft Matter
14
,
5008
5018
(
2018
).
60.
H. C.
Andersen
,
J. D.
Weeks
, and
D.
Chandler
,
Phys. Rev. A
4
,
1597
(
1971
).
61.
P.
Mendoza-Méndez
,
L.
López-Flores
,
A.
Vizcarra-Rendón
,
L. E.
Sánchez-Díaz
, and
M.
Medina-Noyola
,
Physica A
394
,
1
(
2014
).
62.
G. E.
Uhlenbeck
and
L. S.
Ornstein
,
Phys. Rev.
36
,
823
(
1930
).
63.
J. K.
Percus
and
G. J.
Yevick
,
Phys. Rev.
110
,
1
(
1957
).
64.
L.
Verlet
and
J.-J.
Weis
,
Phys. Rev. A
5
,
939
(
1972
).
65.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
San Diego
,
1976
).
67.
K.
Kim
and
S.
Saito
,
Phys. Rev. E
79
,
060501(R)
(
2009
).
68.
E. C.
Cortés Morales
,
L. F.
Elizondo-Aguilera
, and
M.
Medina-Noyola
,
J. Phys. Chem. B
120
,
7975
7987
(
2016
).
69.
R.
Peredo-Ortiz
,
P. F.
Zubieta-Rico
,
E. C.
Cortés-Morales
,
G.
Pérez-Ángel
,
Th.
Voigtmann
,
M.
Medina-Noyola
, and
L. F.
Elizondo-Aguilera
,
J. Phys.: Condens. Matter
34
,
084003
(
2022
).
70.
P. E.
Ramírez-González
,
L.
López-Flores
,
H.
Acuña Campa
, and
M.
Medina-Noyola
,
Phys. Rev. Lett.
107
,
155701
(
2011
).
71.
T.
Rizzo
and
Th.
Voigtmann
,
Europhys. Lett.
111
,
56008
(
2015
).
72.
T.
Rizzo
and
Th.
Voigtmann
,
Phys. Rev. Lett.
124
,
195501
(
2020
).
73.
L. F.
Elizondo-Aguilera
,
T.
Rizzo
, and
Th.
Voigtmann
,
Phys. Rev. Lett.
129
,
238003
(
2022
).
74.
L.
López-Flores
,
H.
Ruiz-Estrada
,
M.
Chávez-Páez
, and
M.
Medina-Noyola
,
Phys. Rev. E
88
,
042301
(
2013
).
75.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
You do not currently have access to this content.