Diffusion is a key kinetic factor determining chemical mixing and phase formation in liquids. In multicomponent systems, the presence of different elements makes it experimentally challenging to measure diffusivities and understand their mechanisms. Using a molecular dynamics simulation, we obtain the diffusion constants and the atomic process of a model Cantor alloy liquid made of five equimolar components. We show that the diffusivities conform remarkably well to the Arrhenius law in a wide range of temperature covering both the equilibrium and undercooled liquid regions. The activation energies for all the alloy elements with different bonding energies and atomic sizes are close to each other. The results suggest that the diffusivity in the multicomponent liquid tends to be homogenized by the components with marginal differences. This finding allows us to treat the different elements as a single type of atom, the pseudo-atom, for diffusional and maybe structural and physical properties in multicomponent liquids.

1.
J. S.
Benjamin
, “
Dispersion strengthened superalloys by mechanical alloying
,”
Metall. Mater. Trans. B
1
(
10
),
2943
2951
(
1970
).
2.
C. C.
Koch
,
O. B.
Cavin
,
C. G.
Mckamey
, and
J. O.
Scarbrough
, “
Preparation of ‘amorphous’ Ni60Nb40 by mechanical alloying
,”
Appl. Phys. Lett.
43
(
11
),
1017
1019
(
1983
).
3.
Y.-D.
He
,
X.-M.
Zhang
, and
J.-H.
You
, “
Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy
,”
Trans. Nonferrous Met. Soc. China
16
,
1228
1235
(
2006
).
4.
T.
Dorin
,
M.
Ramajayam
,
J.
Lamb
, and
T.
Langan
, “
Effect of Sc and Zr additions on the microstructure/strength of Al-Cu binary alloys
,”
Mater. Sci. Eng., A
707
,
58
64
(
2017
).
5.
R.
Ayer
and
P. M.
Machmeier
, “
Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels
,”
Metall. Mater. Trans. A
27
(
9
),
2510
2517
(
1996
).
6.
O.
Grässel
,
L.
Krüger
,
G.
Frommeyer
, and
L. W.
Meyer
, “
High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application
,”
Int. J. Plast.
16
(
10–11
),
1391
1409
(
2000
).
7.
A.
Peker
and
W. L.
Johnson
, “
A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5
,”
Appl. Phys. Lett.
63
(
17
),
2342
2344
(
1993
).
8.
A.
Inoue
and
N.
Nishiyama
, “
Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys
,”
Mater. Sci. Eng., A
226-228
,
401
405
(
1997
).
9.
W. L.
Johnson
, “
Bulk glass-forming metallic alloys: Science and technology
,”
MRS Bull.
24
(
10
),
42
56
(
1999
).
10.
A.
Inoue
, “
Stabilization of metallic supercooled liquid and bulk amorphous alloys
,”
Acta Mater.
48
(
1
),
279
306
(
2000
).
11.
Y. J.
Zhou
,
Y.
Zhang
,
Y. L.
Wang
, and
G. L.
Chen
, “
Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties
,”
Appl. Phys. Lett.
90
,
181904
(
2007
).
12.
B.
Cantor
,
I. T. H.
Chang
,
P.
Knight
, and
A. J. B.
Vincent
, “
Microstructural development in equiatomic multicomponent alloys
,”
Mater. Sci. Eng., A
375-377
,
213
218
(
2004
).
13.
J.-W.
Yeh
,
S.-K.
Chen
,
S.-J.
Lin
,
J.-Y.
Gan
,
T.-S.
Chin
,
T.-T.
Shun
,
C.-H.
Tsau
, and
S.-Y.
Chang
, “
Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
,”
Adv. Eng. Mater.
6
(
5
),
299
303
(
2004
).
14.
C.
Li
,
J.-C.
Li
,
M.
Zhao
, and
Q.
Jiang
, “
Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys
,”
J. Alloys Compd.
475
(
1–2
),
752
757
(
2009
).
15.
Y.
Zhang
,
T. T.
Zuo
,
Z.
Tang
,
M. C.
Gao
,
K. A.
Dahmen
,
P. K.
Liaw
, and
Z. P.
Lu
, “
Microstructures and properties of high-entropy alloys
,”
Prog. Mater. Sci.
61
,
1
93
(
2014
).
16.
A. L.
Greer
, “
Confusion by design
,”
Nature
366
(
6453
),
303
304
(
1993
).
17.
D.
Turnbull
and
M. H.
Cohen
, “
Concerning reconstructive transformation and formation of glass
,”
J. Chem. Phys.
29
,
1049
1054
(
1958
).
18.
A.
Inoue
,
T.
Zhang
, and
A.
Takeuchi
, “
Ferrous and nonferrous bulk amorphous alloys
,”
Mater. Sci. Forum
269-272
,
855
864
(
1998
).
19.
H. Y.
Ding
and
K. F.
Yao
, “
High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass
,”
J. Non-Cryst. Solids
364
,
9
12
(
2013
).
20.
S.
Mukherjee
,
J.
Schroers
,
Z.
Zhou
,
W. L.
Johnson
, and
W.-K.
Rhim
, “
Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability
,”
Acta Mater.
52
(
12
),
3689
3695
(
2004
).
21.
R.
Kozak
,
A.
Sologubenko
, and
W.
Steurer
, “
Single-phase high-entropy alloys—An overview
,”
Z. Kristallogr. - Cryst. Mater.
230
(
1
),
55
68
(
2015
).
22.
B. S.
Murty
,
J. W.
Yeh
, and
S.
Ranganathan
,
High-Entropy Alloys
(
Butterworth-Heinemann
,
London
,
2014
).
23.
M. C.
Gao
and
D. E.
Alman
, “
Searching for next single-phase high entropy alloy compositions
,”
Entropy
15
(
10
),
4504
4519
(
2013
).
24.
Z.
Wu
,
H.
Bei
,
G. M.
Pharr
, and
E. P.
George
, “
Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures
,”
Acta Mater.
81
,
428
441
(
2014
).
25.
C. A.
Angell
, “
Perspective on the glass transition
,”
J. Phys. Chem. Solids
49
,
863
871
(
1988
).
26.
L.
Battezzati
,
A.
Castellero
, and
P.
Rizzi
, “
On the glass transition in metallic melts
,”
J. Non-Cryst. Solids
353
(
32–40
),
3318
3326
(
2007
).
27.
W.
Kob
and
H. C.
Andersen
, “
Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function
,”
Phys. Rev. E
51
,
4626
4641
(
1995
).
28.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
29.
G.-Y.
Zhang
,
Q.-K.
Li
,
Y.
Wu
, and
M.
Li
Homogeneous nucleation in multicomponent alloy during melting
,”(unpublished).
30.
W.-M.
Choi
,
Y. H.
Jo
,
S. S.
Sohn
,
S.
Lee
, and
B.-J.
Lee
, “
Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study
,”
npj Comput. Mater.
4
(
1
),
1
9
(
2018
).
31.
G.-Y.
Zhang
,
X.
Fan
,
Q.
Zhang
,
Q.-K.
Li
,
Y.
Wu
, and
M.
Li
, “
Partial disordering and homogeneous melting in multicomponent systems
,”
Acta Mater.
239
,
118281
(
2022
).
32.
M.
Laurent-Brocq
,
A.
Akhatova
,
L.
Perrière
,
S.
Chebini
,
X.
Sauvage
,
E.
Leroy
, and
Y.
Champion
, “
Insights into the phase diagram of the CrMnFeCoNi high entropy alloy
,”
Acta Mater.
88
,
355
365
(
2015
).
33.
J. R.
Morris
,
C. Z.
Wang
,
K. M.
Ho
, and
C. T.
Chan
, “
Melting line of aluminum from simulations of coexisting phases
,”
Phys. Rev. B
49
(
5
),
3109
3115
(
1994
).
34.
Y. F.
Ye
,
Q.
Wang
,
J.
Lu
,
C. T.
Liu
, and
Y.
Yang
, “
High-entropy alloy: Challenges and prospects
,”
Mater. Today
19
(
6
),
349
362
(
2016
).
35.
J.
Ding
,
M.
Asta
, and
R. O.
Ritchie
, “
Melts of CrCoNi-based high-entropy alloys: Atomic diffusion and electronic/atomic structure from ab initio simulation
,”
Appl. Phys. Lett.
113
(
11
),
111902
(
2018
).
36.
M.
Farias
,
H.
Hu
,
S.-S.
Zhang
,
J.-Zh.
Li
, and
B.
Xu
, “
Molecular dynamic simulation of diffusion in the melt pool in laser additive alloying process of Co-Ni-Cr-Mn-Fe high entropy alloy
,”
ASME Int. Mech. Eng. Congr. Expo.
2A
,
72075
(
2021
).
37.
A.
Meyer
,
S.
Stüber
,
D.
Holland-Moritz
,
O.
Heinen
, and
T.
Unruh
, “
Determination of self-diffusion coefficients by quasielastic neutron scattering measurements of levitated Ni droplets
,”
Phys. Rev. B
77
,
092201
(
2008
).
38.
D. A.
Porter
,
K. E.
Easterling
, and
M. Y.
Sherif
,
Phase Transformations in Metals and Alloys
, 4th ed. (
CRC Press
,
Boca Raton, FL
,
1996
).
39.
Y.
Liu
,
G.-P.
Zheng
, and
M.
Li
, “
The effects of short-range chemical and structural ordering related to oxygen interstitials on mechanical properties of CrCoFeNi high-entropy alloys: A first-principles study
,”
J. Alloys Compd.
843
,
156060
(
2020
).
You do not currently have access to this content.