We consider the calculations of photoionization spectra and core resonances of open-shell systems using range-separated time-dependent density-functional theory. Specifically, we use the time-dependent range-separated hybrid (TDRSH) scheme, combining a long-range Hartree–Fock exchange potential and kernel with a short-range potential and kernel from a local density-functional approximation, and the time-dependent locally range-separated hybrid (TDLRSH) scheme, which uses a local range-separation parameter. To efficiently perform the calculations, we formulate a spin-unrestricted linear-response Sternheimer approach in a non-orthogonal B-spline basis set using appropriate frequency-dependent boundary conditions. We illustrate this approach on the Li atom, which suggests that TDRSH and TDLRSH are adequate simple methods for estimating the single-electron photoionization spectra of open-shell systems.

1.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
2.
E. K. U.
Gross
and
W.
Kohn
,
Phys. Rev. Lett.
55
,
2850
(
1985
).
3.
M. E.
Casida
, in
Recent Advances in Density Functional Methods, Part I
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), p.
155
.
4.
M.
Petersilka
,
U. J.
Gossmann
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
76
,
1212
(
1996
).
5.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
6.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
7.
M. J. G.
Peach
,
T.
Helgaker
,
P.
Sałek
,
T. W.
Keal
,
O. B.
Lutnæs
,
D. J.
Tozer
, and
N. C.
Handy
,
Phys. Chem. Chem. Phys.
8
,
558
(
2006
).
8.
E.
Livshits
and
R.
Baer
,
Phys. Chem. Chem. Phys.
9
,
2932
(
2007
).
9.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
10.
T.
Tsuneda
,
J.-W.
Song
,
S.
Suzuki
, and
K.
Hirao
,
J. Chem. Phys.
133
,
174101
(
2010
).
11.
E.
Fromager
,
S.
Knecht
, and
H. J. A.
Jensen
,
J. Chem. Phys.
138
,
084101
(
2013
).
12.
E.
Rebolini
,
A.
Savin
, and
J.
Toulouse
,
Mol. Phys.
111
,
1219
(
2013
).
13.
D.
Jacquemin
,
E. A.
Perpète
,
G. E.
Scuseria
,
I.
Ciofini
, and
C.
Adamo
,
J. Chem. Theory Comput.
4
,
123
(
2008
).
14.
A. D.
Laurent
and
D.
Jacquemin
,
Int. J. Quantum Chem.
113
,
2019
(
2013
).
15.
F.
Zapata
,
E.
Luppi
, and
J.
Toulouse
,
J. Chem. Phys.
150
,
234104
(
2019
).
16.
J.
Toulouse
,
E.
Rebolini
,
T.
Gould
,
J. F.
Dobson
,
P.
Seal
, and
J. G.
Ángyán
,
J. Chem. Phys.
138
,
194106
(
2013
).
17.
K.
Schwinn
,
F.
Zapata
,
A.
Levitt
,
É.
Cancès
,
E.
Luppi
, and
J.
Toulouse
,
J. Chem. Phys.
156
,
224106
(
2022
).
18.
G. D.
Mahan
and
K. R.
Subbaswamy
,
Local Density Theory of Polarizability
(
Plenum Press
,
New York
,
1990
).
19.
M.
Stener
,
P.
Decleva
, and
A.
Lisini
,
J. Phys. B: At., Mol. Opt. Phys.
28
,
4973
(
1995
).
20.
M.
Stener
and
P.
Decleva
,
J. Chem. Phys.
112
,
10871
(
2000
).
21.
K.
Yabana
,
T.
Nakatsukasa
,
J.-I.
Iwata
, and
G. F.
Bertsch
,
Phys. Status Solidi
243
,
1121
(
2006
).
22.
X.
Andrade
,
S.
Botti
,
M. A. L.
Marques
, and
A.
Rubio
,
J. Chem. Phys.
126
,
184106
(
2007
).
23.
D. A.
Strubbe
,
L.
Lehtovaara
,
A.
Rubio
,
M. A. L.
Marques
, and
S. G.
Louie
, in
Fundamentals of Time-Dependent Density Functional Theory
, Lecture Notes in Physics Vol. 837, edited by
M. A.
Marques
,
N. T.
Maitra
,
F. M.
Nogueira
,
E.
Gross
, and
A.
Rubio
(
Springer
,
Berlin, Heidelberg
,
2012
), pp.
139
166
.
24.
F.
Hofmann
,
I.
Schelter
, and
S.
Kümmel
,
J. Chem. Phys.
149
,
024105
(
2018
).
25.
F.
Hofmann
,
I.
Schelter
, and
S.
Kümmel
,
Phys. Rev. A
99
,
022507
(
2019
).
26.
F.
Hofmann
and
S.
Kümmel
,
J. Chem. Phys.
153
,
114106
(
2020
).
27.
J. G.
Ángyán
,
I. C.
Gerber
,
A.
Savin
, and
J.
Toulouse
,
Phys. Rev. A
72
,
012510
(
2005
).
28.
A.
Savin
, in
Recent Developments of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), pp.
327
357
.
29.
S.
Paziani
,
S.
Moroni
,
P.
Gori-Giorgi
, and
G. B.
Bachelet
,
Phys. Rev. B
73
,
155111
(
2006
).
30.
A. V.
Krukau
,
G. E.
Scuseria
,
J. P.
Perdew
, and
A.
Savin
,
J. Chem. Phys.
129
,
124103
(
2008
).
31.
T.
Aschebrock
and
S.
Kümmel
,
J. Chem. Phys.
151
,
154108
(
2019
).
32.
S.
Klawohn
and
H.
Bahmann
,
J. Chem. Theory Comput.
16
,
953
(
2020
).
33.
T. M.
Maier
,
Y.
Ikabata
, and
H.
Nakai
,
J. Chem. Phys.
154
,
214101
(
2021
).
34.
M.
Brütting
,
H.
Bahmann
, and
S.
Kümmel
,
J. Chem. Phys.
156
,
104109
(
2022
).
35.
C.
de Boor
,
A Practical Guide to Splines
(
Springer Books
,
1978
).
36.
H.
Bachau
,
E.
Cormier
,
P.
Decleva
,
J. E.
Hansen
, and
F.
Martín
,
Rep. Prog. Phys.
64
,
1815
(
2001
).
37.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.9), available at https://physics.nist.gov/asd,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2021
.
38.
B.
Langer
,
J.
Viefhaus
,
O.
Hemmers
,
A.
Menzel
,
R.
Wehlitz
, and
U.
Becker
,
Phys. Rev. A
43
,
1652
(
1991
).
39.
J.
Chen
,
J. B.
Krieger
,
R. O.
Esquivel
,
M. J.
Stott
, and
G. J.
Iafrate
,
Phys. Rev. A
54
,
1910
(
1996
).
40.
C.-O.
Almbladh
and
U.
von Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
41.
O. V.
Gritsenko
and
E. J.
Baerends
,
J. Chem. Phys.
117
,
9154
(
2002
).
42.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Am. Chem. Soc.
131
,
2818
(
2009
).
43.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Chem. Phys.
131
,
244119
(
2009
).
44.
E. P.
Wigner
,
Phys. Rev.
73
,
1002
(
1948
).
45.
H. R.
Sadeghpour
,
J. L.
Bohn
,
M. J.
Cavagnero
,
B. D.
Esry
,
I. I.
Fabrikant
,
J. H.
Macek
, and
A. R. P.
Rau
,
J. Phys. B: At., Mol. Opt. Phys.
33
,
R93
(
2000
).
46.
U.
Fano
and
J. W.
Cooper
,
Phys. Rev.
137
,
A1364
(
1965
).
47.
A. M.
Cantù
,
W. H.
Parkinson
,
G.
Tondello
, and
G. P.
Tozzi
,
J. Opt. Soc. Am.
67
,
1030
(
1977
).
48.
O.
Zatsarinny
and
C. F.
Fischer
,
J. Phys. B: At., Mol. Opt. Phys.
33
,
313
(
2000
).
49.
J.
Li
,
J. D.
Liu
,
S. B.
Zhang
, and
B. J.
Ye
,
Mod. Phys. Lett. B
30
,
1650204
(
2016
).
50.
K. T.
Chung
,
Phys. Rev. A
56
,
R3330(R)
(
1997
).
51.
K. T.
Chung
,
Radiat. Phys. Chem.
70
,
83
(
2004
).
52.
K. T.
Chung
,
Phys. Rev. A
59
,
2065
(
1999
).
You do not currently have access to this content.