Shear history plays an important role in determining the linear and nonlinear rheological response of colloidal gels and can be used for tuning their structure and flow properties. Increasing the colloidal particle aspect ratio lowers the critical volume fraction for gelation due to an increase in the particle excluded volume. Using a combination of rheology and confocal microscopy, we investigate the effect of steady and oscillatory preshear history on the structure and rheology of colloidal gels formed by silica spheres and rods of length L and diameter D (L/D = 10) dispersed in 11 M CsCl solution. We use a non-dimensional Mason number, Mn (=Fvisc./Fattr.), to compare the effect of steady and oscillatory preshear on gel viscoelasticity. We show that after preshearing at intermediate Mn, attractive sphere gel exhibits strengthening, whereas attractive rod gel exhibits weakening. Rheo-imaging of gels of attractive rods shows that at intermediate Mn, oscillatory preshear induces large compact rod clusters in the gel microstructure, compared to steady preshear. Our study highlights the impact of particle shape on gel structuring under flow and viscoelasticity after shear cessation.

1.
J.
Mewis
and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
2012
).
2.
G.
Petekidis
and
N. J.
Wagner
, “
Rheology of colloidal glasses and gels
,” in
Theory and Applications of Colloidal Suspension Rheology
, edited by
N. J.
Wagner
and
J.
Mewis
(
Cambridge University Press
,
Cambridge
,
2021
), Chap. 5, pp.
173
218
.
3.
C. J.
Rueb
and
C. F.
Zukoski
, “
Viscoelastic properties of colloidal gels
,”
J. Rheol.
41
(
2
),
197
218
(
1997
).
4.
H. A.
Barnes
, “
The yield stress—A review or ‘παντα ρɛι’—Everything flows?
,”
J. Non-Newtonian Fluid Mech.
81
(
1–2
),
133
178
(
1999
).
5.
D.
Bonn
,
M. M.
Denn
,
L.
Berthier
,
D.
Thibaut
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
(
3
),
035005
(
2017
).
6.
R.
Buscall
,
P. D. A.
Mills
,
R. F.
Stewart
,
D.
Sutton
,
L. R.
Sutton
, and
G. E.
Yates
, “
The rheology of strongly-flocculated suspensions
,”
J. Non-Newtonian Fluid Mech.
24
(
2
),
183
202
(
1987
).
7.
J.
Mewis
and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
8.
R. G.
Larson
and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
(
3
),
477
501
(
2019
).
9.
C.
Gallegos
and
J. M.
Franco
, “
Rheology of food, cosmetics and pharmaceuticals
,”
Curr. Opin. Colloid Interface Sci.
4
(
4
),
288
293
(
1999
).
10.
T.
Gibaud
,
N.
Mahmoudi
,
J.
Oberdisse
,
P.
Lindner
,
J. S.
Pedersen
,
C. L. P.
Oliveira
,
A.
Stradner
, and
P.
Schurtenberger
, “
New routes to food gels and glasses
,”
Faraday Discuss.
158
(
1
),
267
284
(
2012
).
11.
R.
Mezzenga
and
P.
Fischer
, “
The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions
,”
Rep. Prog. Phys.
76
(
4
),
046601
(
2013
).
12.
C.
Storm
,
J. J.
Pastore
,
F. C.
MacKintosh
,
T. C.
Lubensky
, and
P. A.
Janmey
, “
Nonlinear elasticity in biological gels
,”
Nature
435
(
7039
),
191
194
(
2005
).
13.
A. T. L.
Tan
,
J.
Beroz
,
M.
Kolle
, and
A. J.
Hart
, “
Direct-write freeform colloidal assembly
,”
Adv. Mater.
30
(
44
),
1803620
(
2018
).
14.
D.
Lootens
,
P.
Hébraud
,
E.
Lécolier
, and
H.
Van Damme
, “
Gelation, shear-thinning and shear-thickening in cement slurries
,”
Oil Gas Sci. Technol.
59
(
1
),
31
40
(
2004
).
15.
J.
Mewis
and
N. J.
Wagner
, “
Applications
,” in
Theory and Applications of Colloidal Suspension Rheology
, edited by
N. J.
Wagner
and
J.
Mewis
(
Cambridge University Press
,
Cambridge
,
2021
), Chap. 9, pp.
352
375
16.
N.
Koumakis
,
E.
Moghimi
,
R.
Besseling
,
W. C. K.
Poon
,
J. F.
Brady
, and
G.
Petekidis
, “
Tuning colloidal gels by shear
,”
Soft Matter
11
(
23
),
4640
4648
(
2015
).
17.
E.
Moghimi
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Colloidal gels tuned by oscillatory shear
,”
Soft Matter
13
(
12
),
2371
2383
(
2017
).
18.
A.
Zaccone
,
D.
Gentili
,
H.
Wu
,
M.
Morbidelli
, and
E.
Del Gado
, “
Shear-driven solidification of dilute colloidal suspensions
,”
Phys. Rev. Lett.
106
(
13
),
138301
(
2011
).
19.
H. J.
Walls
,
S. B.
Caines
,
A. M.
Sanchez
, and
S. A.
Khan
, “
Yield stress and wall slip phenomena in colloidal silica gels
,”
J. Rheol.
47
(
4
),
847
868
(
2003
).
20.
P.
Ballesta
,
N.
Koumakis
,
R.
Besseling
,
W. C. K.
Poon
, and
G.
Petekidis
, “
Slip of gels in colloid–polymer mixtures under shear
,”
Soft Matter
9
(
12
),
3237
3245
(
2013
).
21.
M.
Laurati
,
S. U.
Egelhaaf
, and
G.
Petekidis
, “
Nonlinear rheology of colloidal gels with intermediate volume fraction
,”
J. Rheol.
55
(
3
),
673
706
(
2011
).
22.
J.
Sprakel
,
S. B.
Lindström
,
T. E.
Kodger
, and
D. A.
Weitz
, “
Stress enhancement in the delayed yielding of colloidal gels
,”
Phys. Rev. Lett.
106
(
24
),
248303
(
2011
).
23.
S. B.
Lindström
,
T. E.
Kodger
,
J.
Sprakel
, and
D. A.
Weitz
, “
Structures, stresses, and fluctuations in the delayed failure of colloidal gels
,”
Soft Matter
8
(
13
),
3657
3664
(
2012
).
24.
B. J.
Landrum
,
W. B.
Russel
, and
R. N.
Zia
, “
Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes
,”
J. Rheol.
60
(
4
),
783
807
(
2016
).
25.
N.
Koumakis
and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft Matter
7
(
6
),
2456
2470
(
2011
).
26.
H. K.
Chan
and
A.
Mohraz
, “
Two-step yielding and directional strain-induced strengthening in dilute colloidal gels
,”
Phys. Rev. E
85
(
4
),
041403
(
2012
).
27.
S.
Manley
,
J. M.
Skotheim
,
L.
Mahadevan
, and
D. A.
Weitz
, “
Gravitational collapse of colloidal gels
,”
Phys. Rev. Lett.
94
(
21
),
218302
(
2005
).
28.
C. O.
Osuji
and
D. A.
Weitz
, “
Highly anisotropic vorticity aligned structures in a shear thickening attractive colloidal system
,”
Soft Matter
4
(
7
),
1388
1392
(
2008
).
29.
V.
Grenard
,
N.
Taberlet
, and
S.
Manneville
, “
Shear-induced structuration of confined carbon black gels: Steady-state features of vorticity-aligned flocs
,”
Soft Matter
7
(
8
),
3920
3928
(
2011
).
30.
Z.
Varga
and
J. W.
Swan
, “
Large scale anisotropies in sheared colloidal gels
,”
J. Rheol.
62
(
2
),
405
418
(
2018
).
31.
Z.
Varga
,
V.
Grenard
,
S.
Pecorario
,
N.
Taberlet
,
V.
Dolique
,
S.
Manneville
,
T.
Divoux
,
G. H.
McKinley
, and
J. W.
Swan
, “
Hydrodynamics control shear-induced pattern formation in attractive suspensions
,”
Proc. Natl. Acad. Sci.
116
(
25
),
12193
12198
(
2019
).
32.
M.
Das
,
L.
Chambon
,
Z.
Varga
,
M.
Vamvakaki
,
J. W.
Swan
, and
G.
Petekidis
, “
Shear driven vorticity aligned flocs in a suspension of attractive rigid rods
,”
Soft Matter
17
,
1232
(
2021
).
33.
T.
Divoux
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
(
1
),
018304
(
2013
).
34.
S.
Jamali
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear
,”
Phys. Rev. Lett.
123
(
24
),
248003
(
2019
).
35.
S.
Jamali
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Time-rate-transformation framework for targeted assembly of short-range attractive colloidal suspensions
,”
Mater. Today Adv.
5
,
100026
(
2020
).
36.
S. R.
Raghavan
and
S. A.
Khan
, “
Shear-induced microstructural changes in flocculated suspensions of fumed silica
,”
J. Rheol.
39
(
6
),
1311
1325
(
1995
).
37.
G.
Ovarlez
,
L.
Tocquer
,
F.
Bertrand
, and
P.
Coussot
, “
Rheopexy and tunable yield stress of carbon black suspensions
,”
Soft Matter
9
(
23
),
5540
5549
(
2013
).
38.
J. B.
Hipp
,
J. J.
Richards
, and
N. J.
Wagner
, “
Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements
,”
J. Rheol.
63
(
3
),
423
436
(
2019
).
39.
E. M.
Schwen
,
M.
Ramaswamy
,
C.-M.
Cheng
,
L.
Jan
, and
I.
Cohen
, “
Embedding orthogonal memories in a colloidal gel through oscillatory shear
,”
Soft Matter
16
(
15
),
3746
3752
(
2020
).
40.
W.-H.
Shih
,
W. Y.
Shih
,
S.-I.
Kim
,
J.
Liu
, and
I. A.
Aksay
, “
Scaling behavior of the elastic properties of colloidal gels
,”
Phys. Rev. A
42
(
8
),
4772
(
1990
).
41.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
(
7194
),
499
503
(
2008
).
42.
K. N.
Pham
,
A. M.
Puertas
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaıd
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C. K.
Poon
, “
Multiple glassy states in a simple model system
,”
Science
296
(
5565
),
104
106
(
2002
).
43.
P.
Varadan
and
M. J.
Solomon
, “
Shear-induced microstructural evolution of a thermoreversible colloidal gel
,”
Langmuir
17
(
10
),
2918
2929
(
2001
).
44.
J.
Vermant
and
M. J.
Solomon
, “
Flow-induced structure in colloidal suspensions
,”
J. Phys.: Condens. Matter
17
(
4
),
R187
(
2005
).
45.
A.
Mohraz
and
M. J.
Solomon
, “
Orientation and rupture of fractal colloidal gels during start-up of steady shear flow
,”
J. Rheol.
49
(
3
),
657
681
(
2005
).
46.
K.
Masschaele
,
J.
Fransaer
, and
J.
Vermant
, “
Flow-induced structure in colloidal gels: Direct visualization of model 2D suspensions
,”
Soft Matter
7
(
17
),
7717
7726
(
2011
).
47.
J.
Kim
,
D.
Merger
,
M.
Wilhelm
, and
M. E.
Helgeson
, “
Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear
,”
J. Rheol.
58
(
5
),
1359
1390
(
2014
).
48.
L. C.
Hsiao
,
R. S.
Newman
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels
,”
Proc. Natl. Acad. Sci.
109
(
40
),
16029
16034
(
2012
).
49.
A. A.
Potanin
, “
On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow
,”
J. Colloid Interface Sci.
157
(
2
),
399
410
(
1993
).
50.
E.
Dickinson
, “
Structure and rheology of colloidal particle gels: Insight from computer simulation
,”
Adv. Colloid Interface Sci.
199–200
,
114
127
(
2013
).
51.
J. D.
Park
and
K. H.
Ahn
, “
Structural evolution of colloidal gels at intermediate volume fraction under start-up of shear flow
,”
Soft Matter
9
(
48
),
11650
11662
(
2013
).
52.
J.
Colombo
and
E.
Del Gado
, “
Stress localization, stiffening, and yielding in a model colloidal gel
,”
J. Rheol.
58
(
5
),
1089
1116
(
2014
).
53.
J. D.
Park
,
K. H.
Ahn
, and
S. J.
Lee
, “
Structural change and dynamics of colloidal gels under oscillatory shear flow
,”
Soft Matter
11
(
48
),
9262
9272
(
2015
).
54.
F.
Pignon
,
J.-M.
Piau
, and
A.
Magnin
, “
Structure and pertinent length scale of a discotic clay gel
,”
Phys. Rev. Lett.
76
(
25
),
4857
(
1996
).
55.
O.
Lieleg
,
K. M.
Schmoller
,
C. J.
Cyron
,
Y.
Luan
,
W. A.
Wall
, and
A. R.
Bausch
, “
Structural polymorphism in heterogeneous cytoskeletal networks
,”
Soft Matter
5
(
9
),
1796
1803
(
2009
).
56.
J. R.
Capadona
,
K.
Shanmuganathan
,
D. J.
Tyler
,
S. J.
Rowan
, and
C.
Weder
, “
Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis
,”
Science
319
(
5868
),
1370
1374
(
2008
).
57.
A. B.
Fall
,
S. B.
Lindström
,
J.
Sprakel
, and
L.
Wågberg
, “
A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation
,”
Soft Matter
9
(
6
),
1852
1863
(
2013
).
58.
L.
Onsager
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N. Y. Acad. Sci.
51
(
4
),
627
659
(
1949
).
59.
J.
Tang
and
S.
Fraden
, “
Isotropic-cholesteric phase transition in colloidal suspensions of filamentous bacteriophage fd
,”
Liq. Cryst.
19
(
4
),
459
467
(
1995
).
60.
M. P.
Lettinga
,
K.
Kang
,
A.
Imhof
,
D.
Derks
, and
J. K. G.
Dhont
, “
Kinetic pathways of the nematic–isotropic phase transition as studied by confocal microscopy on rod-like viruses
,”
J. Phys.: Condens. Matter
17
(
45
),
S3609
(
2005
).
61.
A.
Kuijk
,
D. V.
Byelov
,
A. V.
Petukhov
,
A.
Van Blaaderen
, and
A.
Imhof
, “
Phase behavior of colloidal silica rods
,”
Faraday Discuss.
159
(
1
),
181
199
(
2012
).
62.
M.
Doi
,
S. F.
Edwards
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1988
), Vol. 73.
63.
E. K.
Hobbie
, “
Shear rheology of carbon nanotube suspensions
,”
Rheologica Acta
49
(
4
),
323
334
(
2010
).
64.
M. P. B.
Van Bruggen
,
H. N. W.
Lekkerkerker
,
G.
Maret
, and
J. K. G.
Dhont
, “
Long-time translational self-diffusion in isotropic and nematic dispersions of colloidal rods
,”
Phys. Rev. E
58
(
6
),
7668
(
1998
).
65.
A.
Mohraz
,
D. B.
Moler
,
R. M.
Ziff
, and
M. J.
Solomon
, “
Effect of monomer geometry on the fractal structure of colloidal rod aggregates
,”
Phys. Rev. Lett.
92
(
15
),
155503
(
2004
).
66.
M. J.
Solomon
and
P. T.
Spicer
, “
Microstructural regimes of colloidal rod suspensions, gels, and glasses
,”
Soft Matter
6
(
7
),
1391
1400
(
2010
).
67.
S.
Broersma
, “
Rotational diffusion constant of a cylindrical particle
,”
J. Chem. Phys.
32
(
6
),
1626
1631
(
1960
).
68.
S.
Shafiei-Sabet
,
W. Y.
Hamad
, and
S. G.
Hatzikiriakos
, “
Rheology of nanocrystalline cellulose aqueous suspensions
,”
Langmuir
28
(
49
),
17124
17133
(
2012
).
69.
M.
Ripoll
,
P.
Holmqvist
,
R. G.
Winkler
,
G.
Gompper
,
J. K. G.
Dhont
, and
M. P.
Lettinga
, “
Attractive colloidal rods in shear flow
,”
Phys. Rev. Lett.
101
(
16
),
168302
(
2008
).
70.
J. T.
Stimatze
,
D. A.
Egolf
, and
J. S.
Urbach
, “
Torsional stiffness determines aggregate structure in sheared colloidal rod suspensions
,”
Soft Matter
12
(
37
),
7764
7771
(
2016
).
71.
S.
Lin-Gibson
,
J. A.
Pathak
,
E. A.
Grulke
,
H.
Wang
, and
E. K.
Hobbie
Hobbie
, “
Elastic flow instability in nanotube suspensions
,”
Phys. Rev. Lett.
92
(
4
),
048302
(
2004
).
72.
A.
Kuijk
,
A.
Van Blaaderen
, and
A.
Imhof
, “
Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio
,”
J. Am. Chem. Soc.
133
(
8
),
2346
2349
(
2011
).
73.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
(
32
),
323101
(
2007
).
74.
H.
Guo
,
S.
Ramakrishnan
,
J. L.
Harden
, and
R. L.
Leheny
, “
Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations
,”
J. Chem. Phys.
135
(
15
),
154903
(
2011
).
75.
H.
Hoekstra
,
J.
Vermant
,
J.
Mewis
, and
G. G.
Fuller
, “
Flow-induced anisotropy and reversible aggregation in two-dimensional suspensions
,”
Langmuir
19
(
22
),
9134
9141
(
2003
).
76.
A.
Stroobants
,
H. N. W.
Lekkerkerker
, and
T.
Odijk
, “
Effect of electrostatic interaction on the liquid crystal phase transition in solutions of rodlike polyelectrolytes
,”
Macromolecules
19
(
8
),
2232
2238
(
1986
).
77.
T.
Drwenski
,
S.
Dussi
,
M.
Hermes
,
M.
Dijkstra
, and
R.
van Roij
, “
Phase diagrams of charged colloidal rods: Can a uniaxial charge distribution break chiral symmetry?
,”
J. Chem. Phys.
144
(
9
),
094901
(
2016
).
78.
P. A.
Buining
,
A. P.
Philipse
, and
H. N. W.
Lekkerkerker
, “
Phase behavior of aqueous dispersions of colloidal boehmite rods
,”
Langmuir
10
(
7
),
2106
2114
(
1994
).
79.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press
,
2015
).
80.
L.
Bergström
, “
Hamaker constants of inorganic materials
,”
Adv. Colloid Interface Sci.
70
,
125
169
(
1997
).
81.
R. P.
Murphy
,
K.
Hong
, and
N. J.
Wagner
, “
Thermoreversible gels composed of colloidal silica rods with short-range attractions
,”
Langmuir
32
(
33
),
8424
8435
(
2016
).
82.
A. P.
Eberle
,
N.
Martys
,
L.
Porcar
,
S. R.
Kline
,
W. L.
George
,
J. M.
Kim
,
P. D.
Butler
, and
N. J.
Wagner
, “
Shear viscosity and structural scalings in model adhesive hard-sphere gels
,”
Phys. Rev. E
89
(
5
),
050302
(
2014
).
83.
F. E.
Torres
,
W. B.
Russel
, and
W. R.
Schowalter
, “
Floc structure and growth kinetics for rapid shear coagulation of polystyrene colloids
,”
J. Colloid Interface Sci.
142
(
2
),
554
574
(
1991
).
84.
A. P.
Philipse
, “
The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders
,”
Langmuir
12
(
5
),
1127
1133
(
1996
).
85.
F.
Bonacci
,
X.
Chateau
,
E. M.
Furst
,
J.
Fusier
,
J.
Goyon
, and
A.
Lemaître
, “
Contact and macroscopic aging in colloidal suspensions
,”
Nat. Mater.
19
,
775
(
2020
).
86.
M. C.
Yang
,
L. E.
Scriven
, and
C. W.
Macosko
, “
Some rheological measurements on magnetic iron oxide suspensions in silicone oil
,”
J. Rheol.
30
(
5
),
1015
1029
(
1986
).
87.
V. B.
Pai
and
S. A.
Khan
, “
Gelation and rheology of xanthan/enzyme-modified guar blends
,”
Carbohydr. Polym.
49
(
2
),
207
216
(
2002
).
88.
A. H.
Krall
and
D. A.
Weitz
, “
Internal dynamics and elasticity of fractal colloidal gels
,”
Phys. Rev. Lett.
80
(
4
),
778
(
1998
).
89.
S.
Romer
,
H.
Bissig
,
P.
Schurtenberger
, and
F.
Scheffold
, “
Rheology and internal dynamics of colloidal gels from the dilute to the concentrated regime
,”
EPL
108
(
4
),
48006
(
2014
).
90.
P.-K.
Kao
,
M. J.
Solomon
, and
M.
Ganesan
, “
Microstructure and elasticity of dilute gels of colloidal discoids
,”
Soft Matter
18
,
1350
(
2022
).
91.
J. P.
Pantina
and
E. M.
Furst
, “
Elasticity and critical bending moment of model colloidal aggregates
,”
Phys. Rev. Lett.
94
(
13
),
138301
(
2005
).
92.
J. P.
Pantina
and
E. M.
Furst
, “
Colloidal aggregate micromechanics in the presence of divalent ions
,”
Langmuir
22
(
12
),
5282
5288
(
2006
).
93.
J. M.
Kim
Kim
,
J.
Fang
,
A. P. R.
Eberle
,
R.
Castañeda-Priego
, and
N. J.
Wagner
, “
Gel transition in adhesive hard-sphere colloidal dispersions: The role of gravitational effects
,”
Phys. Rev. Lett.
110
(
20
),
208302
(
2013
).
94.
A.
Narayanan
,
F.
Mugele
, and
M. H. G.
Duits
, “
Mechanical history dependence in carbon black suspensions for flow batteries: A rheo-impedance study
,”
Langmuir
33
(
7
),
1629
1638
(
2017
).
95.
J. B.
Hipp
,
J. J.
Richards
, and
N. J.
Wagner
, “
Direct measurements of the microstructural origin of shear-thinning in carbon black suspensions
,”
J. Rheol.
65
(
2
),
145
157
(
2021
).
96.
N.
Dagès
,
L. V.
Bouthier
,
L.
Matthews
,
S.
Manneville
,
T.
Divoux
,
A.
Poulesquen
, and
T.
Gibaud
, “
Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation
,”
Soft Matter
18
(
35
),
6645
6659
(
2022
).
97.
M. A.
Sutton
,
J. J.
Orteu
, and
H.
Schreier
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
(
Springer Science and Business Media
,
2009
).
98.
B.
Pan
,
K.
Qian
,
H.
Xie
, and
A.
Asundi
, “
Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review
,”
Meas. Sci. Technol.
20
(
6
),
062001
(
2009
).
99.
G.
Chinga
and
K.
Syverud
, “
Quantification of paper mass distributions within local picking areas
,”
Nord. Pulp Pap. Res. J.
22
(
4
),
441
446
(
2007
).
100.
A. D.
Dinsmore
,
E. R.
Weeks
,
V.
Prasad
,
A. C.
Levitt
, and
D. A.
Weitz
, “
Three-dimensional confocal microscopy of colloids
,”
Appl. Opt.
40
(
24
),
4152
4159
(
2001
).
101.
Y. M.
Joshi
, “
A model for aging under deformation field, residual stresses and strains in soft glassy materials
,”
Soft Matter
11
(
16
),
3198
3214
(
2015
).

Supplementary Material

You do not currently have access to this content.