The effect of gases on the surface composition of Cu–Pt bimetallic catalysts has been tested by in situ infrared (IR) and x-ray absorption spectroscopies. Diffusion of Pt atoms within the Cu–Pt nanoparticles was observed both in vacuum and under gaseous atmospheres. Vacuum IR spectra of CO adsorbed on CuPtx/SBA-15 catalysts (x = 0–∞) at 125 K showed no bonding on Pt regardless of Pt content, but reversible Pt segregation to the surface was seen with the high-Pt-content (x ≥ 0.2) samples upon heating to 225 K. In situ IR spectra in CO atmospheres also highlighted the reversible segregation of Pt to the surface and its diffusion back into the bulk when cycling the temperature from 295 to 495 K and back, most evidently for diluted single-atom alloy catalysts (x ≤ 0.01). Similar behavior was possibly observed under H2 using small amounts of CO as a probe molecule. In situ x-ray absorption near-edge structure data obtained for CuPt0.2/SBA-15 under both CO and He pointed to the metallic nature of the Pt atoms irrespective of gas or temperature, but analysis of the extended x-ray absorption fine structure identified a change in coordination environment around the Pt atoms, from a (Pt–Cu):(Pt–Pt) coordination number ratio of ∼6:6 at or below 445 K to 8:4 at 495 K. The main conclusion is that Cu–Pt bimetallic catalysts are dynamic, with the composition of their surfaces being dependent on temperature in gaseous environments.

1.
G. C.
Bond
,
Metal-Catalysed Reactions of Hydrocarbons
, Fundamental and Applied Catalysis (
Springer
,
New York
,
2005
).
2.
D.
Sanfilippo
and
P. N.
Rylander
,
Ullmann’s Encyclopedia of Industrial Chemistry
(
Wiley‐VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2012
), p.
451
.
3.
Z.
Ma
and
F.
Zaera
, in
Encyclopedia of Inorganic and Bioinorganic Chemistry
, edited by
R. A.
Scott
(
John Wiley & Sons
,
Chichester
,
2014
), p.
eibc0079
.
4.
J. H.
Sinfelt
,
Bimetallic Catalysts: Discoveries, Concepts and Applications
(
John Wiley & Sons
,
New York
,
1983
).
5.
R.
Ferrando
,
J.
Jellinek
, and
R. L.
Johnston
,
Chem. Rev.
108
,
845
(
2008
).
6.
W.
Yu
,
M. D.
Porosoff
, and
J. G.
Chen
,
Chem. Rev.
112
,
5780
(
2012
).
7.
J. A.
Rodriguez
,
Surf. Sci. Rep.
24
,
223
(
1996
).
8.
Y.
Wang
and
P. B.
Balbuena
,
J. Phys. Chem. B
109
,
18902
(
2005
).
9.
A. J.
Medford
 et al.,
J. Catal.
328
,
36
(
2015
).
10.
M. T.
Greiner
 et al.,
Nat. Chem.
10
,
1008
(
2018
).
12.
P.
Liu
and
J. K.
Nørskov
,
Phys. Chem. Chem. Phys.
3
,
3814
(
2001
).
13.
F.
Gao
and
D. W.
Goodman
,
Chem. Soc. Rev.
41
,
8009
(
2012
).
14.
S.
Sarfraz
 et al.,
ACS Catal.
6
,
2842
(
2016
).
15.
P. N.
Duchesne
 et al.,
Nat. Mater.
17
,
1033
(
2018
).
16.
J.
Han
 et al.,
Chin. J. Chem.
37
,
977
(
2019
).
17.
R. T.
Hannagan
 et al.,
Chem. Rev.
120
,
12044
(
2020
).
19.
M.
Johansson
,
O.
Lytken
, and
I.
Chorkendorff
,
J. Chem. Phys.
128
,
034706
(
2008
).
20.
L.
Álvarez-Falcón
 et al.,
Surf. Sci.
646
,
221
(
2016
).
21.
B.
Chen
and
F.
Zaera
,
J. Phys. Chem. C
125
,
14709
(
2021
).
22.
C. P.
O’Brien
 et al.,
J. Phys. Chem. C
115
,
24221
(
2011
).
23.
G.
Gumuslu
 et al.,
ACS Catal.
5
,
3137
(
2015
).
24.
M.
Luneau
 et al.,
Chem. Rev.
120
,
12834
(
2020
).
25.
E. C. H.
Sykes
and
P.
Christopher
,
Curr. Opin. Chem. Eng.
29
,
67
(
2020
).
26.
M. B.
Boucher
 et al.,
Phys. Chem. Chem. Phys.
15
,
12187
(
2013
).
27.
F. R.
Lucci
 et al.,
Nat. Commun.
6
,
8550
(
2015
).
28.
G. X.
Pei
 et al.,
ACS Catal.
7
,
1491
(
2017
).
29.
M.
Luneau
 et al.,
ACS Catal.
10
,
441
(
2019
).
30.
Y.
Cao
 et al.,
ACS Catal.
9
,
9150
(
2019
).
31.
Y.
Cao
 et al.,
ACS Catal.
10
,
3431
(
2020
).
32.
F. R.
Lucci
 et al.,
J. Phys. Chem. C
119
,
24351
(
2015
).
33.
M. T.
Darby
 et al.,
J. Phys. Chem. Lett.
9
,
5636
(
2018
).
34.
G.
Giannakakis
,
M.
Flytzani-Stephanopoulos
, and
E. C. H.
Sykes
,
Acc. Chem. Res.
52
,
237
(
2019
).
35.
M. T.
Darby
 et al.,
ACS Catal.
8
,
5038
(
2018
).
36.
H.
Thirumalai
and
J. R.
Kitchin
,
Top. Catal.
61
,
462
(
2018
).
37.
J.
Schumann
 et al.,
J. Phys. Chem. Lett.
12
,
10060
(
2021
).
38.
J. P.
Simonovis
 et al.,
J. Phys. Chem. C
122
,
4488
(
2018
).
39.
D.
Molina
and
M.
Trenary
, in
AVS 68th International Symposium and Exhibition
(
American Vacuum Society
,
Pittsburgh, PA
,
2022
).
40.
S.
Zafeiratos
,
S.
Piccinin
, and
D.
Teschner
,
Catal. Sci. Technol.
2
,
1787
(
2012
).
41.
K. G.
Papanikolaou
,
M. T.
Darby
, and
M.
Stamatakis
,
J. Phys. Chem. C
123
,
9128
(
2019
).
42.
S.
Liu
 et al.,
ACS Catal.
9
,
5011
(
2019
).
43.
M. A.
van Spronsen
 et al.,
J. Phys. Chem. C
123
,
8312
(
2019
).
44.
J. P.
Simonovis
 et al.,
Surf. Sci.
679
,
207
(
2019
).
46.
Z.
Konuspayeva
 et al.,
J. Mater. Chem. A
5
,
17360
(
2017
).
47.
E. V.
Carino
and
R. M.
Crooks
,
Langmuir
27
,
4227
(
2011
).
48.
N.
Marcella
 et al.,
Nat. Commun.
13
,
832
(
2022
).
49.
H.
Tiznado
,
S.
Fuentes
, and
F.
Zaera
,
Langmuir
20
,
10490
(
2004
).
51.
P. J.
Chupas
 et al.,
J. Appl. Crystallogr.
41
,
822
(
2008
).
52.
M.
Kohler
 et al.,
J. Catal.
117
,
188
(
1989
).
53.
A.
Dandekar
and
M. A.
Vannice
,
J. Catal.
178
,
621
(
1998
).
54.
K.
Hadjiivanov
and
H.
Knözinger
,
Phys. Chem. Chem. Phys.
3
,
1132
(
2001
).
55.
D. J.
Stacchiola
,
Acc. Chem. Res.
48
,
2151
(
2015
).
56.
N. D.
Nielsen
 et al.,
Surf. Sci.
703
,
121725
(
2021
).
57.
T.
Han
 et al.,
J. Phys. Chem. C
126
,
3078
(
2022
).
58.
R. A.
Shigeishi
and
D. A.
King
,
Surf. Sci.
58
,
379
(
1976
).
59.
R.
Martin
,
P.
Gardner
, and
A. M.
Bradshaw
,
Surf. Sci.
342
,
69
(
1995
).
60.
F.
Zaera
,
J.
Liu
, and
M.
Xu
,
J. Chem. Phys.
106
,
4204
(
1997
).
61.
M. J.
Kappers
and
J. H.
van der Maas
,
Catal. Lett.
10
,
365
(
1991
).
62.
J.
Liu
 et al.,
J. Am. Chem. Soc.
138
,
6396
(
2016
).
63.
J.
Finzel
and
P.
Christopher
,
Top. Catal.
65
,
1587
(
2022
).
64.
M. T.
Darby
 et al.,
Top. Catal.
61
,
428
(
2018
).
65.
C. T.
Campbell
 et al.,
Surf. Sci.
107
,
207
(
1981
).
66.
J. L.
Gland
and
E. B.
Kollin
,
J. Chem. Phys.
78
,
963
(
1983
).
67.
B.
Tränkenschuh
 et al.,
Surf. Sci.
601
,
1108
(
2007
).
68.
69.
B. E.
Hayden
and
A. M.
Bradshaw
,
Surf. Sci.
125
,
787
(
1983
).
70.
B. E.
Hayden
 et al.,
Surf. Sci.
149
,
394
(
1985
).
71.
J. A.
Rodriguez
,
C. M.
Truong
, and
D. W.
Goodman
,
J. Chem. Phys.
96
,
7814
(
1992
).
72.
A. M.
Baró
,
H.
Ibach
, and
H. D.
Bruchmann
,
Surf. Sci.
88
,
384
(
1979
).
73.
Ş. C.
Bădescu
 et al.,
Phys. Rev. Lett.
88
,
136101
(
2002
).
74.
H.
Asada
 et al.,
J. Chem. Phys.
63
,
4078
(
1975
).
75.
A. J.
Renouprez
and
H.
Jobic
,
J. Catal.
113
,
509
(
1988
).
76.
S. F.
Parker
 et al.,
Chem. Eur. J.
25
,
6496
(
2019
).
77.
G.
Meitzner
 et al.,
J. Chem. Phys.
83
,
353
(
1985
).
78.
R. S.
Irani
and
R. W.
Cahn
,
Nature
226
,
1045
(
1970
).
79.
T.
Abe
,
B.
Sundman
, and
H.
Onodera
,
J. Phase Equilib. Diffus.
27
,
5
(
2006
).
80.
Y.
Liu
,
L.
Zhang
, and
D.
Yu
,
J. Phase Equilib. Diffus.
30
,
136
(
2009
).
81.
J.
Tang
 et al.,
J. Phys. Chem. C
119
,
21515
(
2015
).
82.
L.
Vega
 et al.,
Mater. Adv.
2
,
6589
(
2021
).
83.
A. J.
Therrien
 et al.,
Nat. Catal.
1
,
192
(
2018
).

Supplementary Material

You do not currently have access to this content.