We discuss pressure computations for the hard-disk model performed since 1953 and compare them to the results that we obtain with a powerful event-chain Monte Carlo and a massively parallel Metropolis algorithm. Like other simple models in the sciences, such as the Drosophila model of biology, the hard-disk model has needed monumental efforts to be understood. In particular, we argue that the difficulty of estimating the pressure has not been fully realized in the decades-long controversy over the hard-disk phase-transition scenario. We present the physics of the hard-disk model, the definition of the pressure and its unbiased estimators, several of which are new. We further treat different sampling algorithms and crucial criteria for bounding mixing times in the absence of analytical predictions. Our definite results for the pressure, for up to one million disks, may serve as benchmarks for future sampling algorithms. A synopsis of hard-disk pressure data as well as different versions of the sampling algorithms and pressure estimators are made available in an open-source repository.

1.
P.
Kapitza
, “
Viscosity of liquid helium below the λ-point
,”
Nature
141
,
74
(
1938
).
2.
V. G.
Vaks
and
A. I.
Larkin
, “
On phase transitions of second order
,”
J. Exp. Theor. Phys.
22
,
678
(
1966
), available at http://www.jetp.ras.ru/cgi-bin/e/index/e/22/3/p678?a=list.
3.
M.
Campostrini
,
M.
Hasenbusch
,
A.
Pelissetto
, and
E.
Vicari
, “
Theoretical estimates of the critical exponents of the superfluid transition in He4 by lattice methods
,”
Phys. Rev. B
74
,
144506
(
2006
).
4.
M.
Hasenbusch
, “
Monte Carlo study of an improved clock model in three dimensions
,”
Phys. Rev. B
100
,
224517
(
2019
).
5.
S. M.
Chester
,
W.
Landry
,
J.
Liu
,
D.
Poland
,
D.
Simmons-Duffin
,
N.
Su
, and
A.
Vichi
, “
Carving out OPE space and precise O(2) model critical exponents
,”
J. High Energy Phys.
2020
,
142
.
6.
E. L.
Pollock
and
D. M.
Ceperley
, “
Path-integral computation of superfluid densities
,”
Phys. Rev. B
36
,
8343
(
1987
).
7.
K. G.
Wilson
, “
The renormalization group and critical phenomena
,”
Rev. Mod. Phys.
55
,
583
(
1983
).
8.
J. A.
Lipa
,
D. R.
Swanson
,
J. A.
Nissen
,
T. C. P.
Chui
, and
U. E.
Israelsson
, “
Heat capacity and thermal relaxation of bulk helium very near the lambda point
,”
Phys. Rev. Lett.
76
,
944
(
1996
).
9.
J. A.
Lipa
,
J. A.
Nissen
,
D. A.
Stricker
,
D. R.
Swanson
, and
T. C. P.
Chui
, “
Specific heat of liquid helium in zero gravity very near the lambda point
,”
Phys. Rev. B
68
,
174518
(
2003
).
10.
H. J.
Muller
, “
Nobel Lecture: The production of mutations
,” in
Nobel Lectures, Physiology or Medicine 1942-1962
(Elsevier Publishing Company, Amsterdam,
1964
), available at https://www.nobelprize.org/prizes/medicine/1946/muller/lecture/.
11.
C.
Nüsslein-Volhard
, “
Nobel Lecture: The identification of genes controlling development in flies and fishes
,” in
Nobel Lectures, Physiology or Medicine 1991-1995
, edited by
N.
Ringertz
(World Scientific Publishing Co., Singapore,
1997
), available at https://www.nobelprize.org/prizes/medicine/1995/nusslein-volhard/lecture/.
12.
R. E.
Kohler
,
Lords of the Fly: Drosophila Genetics and the Experimental Life, History, Philosophy, and Social Studies of Science: Biology
(
University of Chicago Press
,
1994
).
13.
M. R.
Dietrich
,
R. A.
Ankeny
, and
P. M.
Chen
,
Publ. Trends Model Org. Res., Genet.
198
,
787
(
2014
).
14.
B. J.
Alder
and
T. E.
Wainwright
, “
Phase transition in elastic disks
,”
Phys. Rev.
127
,
359
(
1962
).
15.
J. M.
Kosterlitz
and
D. J.
Thouless
, “
Ordering, metastability and phase transitions in two-dimensional systems
,”
J. Phys. C: Solid State Phys.
6
,
1181
(
1973
).
16.
D.
Bernoulli
,
Hydrodynamica
(
ETH-Bibliothek Zürich
,
1738
); available at .
17.
Y. G.
Sinai
, “
Dynamical systems with elastic reflections
,”
Russ. Math. Surv.
25
,
137
(
1970
).
18.
N.
Simányi
, “
Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems
,”
Invent. Math.
154
,
123
(
2003
).
19.
J. L.
Lebowitz
and
O.
Penrose
, “
Convergence of virial expansions
,”
J. Math. Phys.
5
,
841
(
1964
).
20.
T.
Helmuth
,
W.
Perkins
, and
S.
Petti
, “
Correlation decay for hard spheres via Markov chains
,”
Ann. Appl. Probab.
32
,
2063
(
2022
).
21.
L.
Boltzmann
,
Lectures on Gas Theory, Dover Books on Physics
(
Dover Publications
,
1995
).
22.
L.
Fejes
, “
Über einen geometrischen Satz
,”
Math. Z.
46
,
83
(
1940
).
23.
T.
Richthammer
, “
Translation-invariance of two-dimensional Gibbsian point processes
,”
Commun. Math. Phys.
274
,
81
(
2007
).
24.
T.
Richthammer
, “
Lower bound on the mean square displacement of particles in the hard disk model
,”
Commun. Math. Phys.
345
,
1077
(
2016
).
25.
J. G.
Kirkwood
and
E.
Monroe
, “
Statistical mechanics of fusion
,”
J. Chem. Phys.
9
,
514
(
1941
).
26.
G.
Battimelli
and
G.
Ciccotti
, “
Berni Alder and the pioneering times of molecular simulation
,”
Eur. Phys. J. H
43
,
303
(
2018
).
27.
R.
Peierls
, “
Quelques propriétés typiques des corps solides
,”
Ann. Inst. Henri Poincare
5
,
177
(
1935
), available at https://eudml.org/doc/78996.
28.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
(
1953
).
29.
H. E.
Stanley
and
T. A.
Kaplan
, “
Possibility of a phase transition for the two-dimensional Heisenberg model
,”
Phys. Rev. Lett.
17
,
913
(
1966
).
30.
N. D.
Mermin
, “
Crystalline order in two dimensions
,”
Phys. Rev.
176
,
250
(
1968
).
31.
J. E.
Mayer
and
W. W.
Wood
, “
Interfacial tension effects in finite, periodic, two-dimensional systems
,”
J. Chem. Phys.
42
,
4268
(
1965
).
32.
J. M.
Kosterlitz
, “
The critical properties of the two-dimensional xy model
,”
J. Phys. C: Solid State Phys.
7
,
1046
(
1974
).
33.
B. I.
Halperin
and
D. R.
Nelson
, “
Theory of two-dimensional melting
,”
Phys. Rev. Lett.
41
,
121
(
1978
).
34.
A. P.
Young
, “
Melting and the vector Coulomb gas in two dimensions
,”
Phys. Rev. B
19
,
1855
(
1979
).
35.
E. P.
Bernard
and
W.
Krauth
, “
Two-step melting in two dimensions: First-order liquid-hexatic transition
,”
Phys. Rev. Lett.
107
,
155704
(
2011
).
36.
E. P.
Bernard
,
W.
Krauth
, and
D. B.
Wilson
, “
Event-chain Monte Carlo algorithms for hard-sphere systems
,”
Phys. Rev. E
80
,
056704
(
2009
).
37.
J.
Lee
and
K. J.
Strandburg
, “
First-order melting transition of the hard-disk system
,”
Phys. Rev. B
46
,
11190
(
1992
).
38.
H. C.
Andersen
, “
Molecular dynamics simulations at constant pressure and/or temperature
,”
J. Chem. Phys.
72
,
2384
(
1980
).
39.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
40.
L. A.
Rowley
,
D.
Nicholson
, and
N. G.
Parsonage
, “
Monte Carlo grand canonical ensemble calculation in a gas-liquid transition region for 12-6 Argon
,”
J. Comput. Phys.
17
,
401
(
1975
).
41.
W.
Krauth
,
Statistical Mechanics: Algorithms and Computations
(
Oxford University Press
,
2006
).
42.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
(
1954
).
43.
M.
Michel
,
S. C.
Kapfer
, and
W.
Krauth
, “
Generalized event-chain Monte Carlo: Constructing rejection-free global-balance algorithms from infinitesimal steps
,”
J. Chem. Phys.
140
,
054116
(
2014
).
44.
B. J.
Alder
and
T. E.
Wainwright
, “
Phase transition for a hard sphere system
,”
J. Chem. Phys.
27
,
1208
(
1957
).
45.
B. J.
Alder
and
T. E.
Wainwright
, “
Studies in molecular dynamics. I. General method
,”
J. Chem. Phys.
31
,
459
(
1959
).
46.
D. C.
Rapaport
, “
The event scheduling problem in molecular dynamic simulation
,”
J. Comput. Phys.
34
,
184
(
1980
).
47.
D. C.
Rapaport
, “
The event-driven approach to N-body simulation
,”
Prog. Theor. Exp. Phys.
178
,
5
(
2009
).
48.
M.
Isobe
, “
Simple and efficient algorithm for large scale molecular dynamics simulation in hard disk system
,”
Int. J. Mod. Phys. C
10
,
1281
(
1999
).
49.
M.
Isobe
, “
Hard sphere simulation in statistical physics—Methodologies and applications
,”
Mol. Simul.
42
,
1317
(
2016
).
50.
M. N.
Bannerman
,
R.
Sargant
, and
L.
Lue
, “
DynamO: A free O(N) general event-driven molecular dynamics simulator
,”
J. Comput. Chem.
32
,
3329
(
2011
).
51.
B. D.
Lubachevsky
, “
Simulating billiards: Serially and in parallel
,”
Int. J. Comput. Simul.
2
,
373
(
1992
).
52.
S.
Miller
and
S.
Luding
, “
Event-driven molecular dynamics in parallel
,”
J. Comput. Phys.
193
,
306
(
2004
).
53.
M. A.
Khan
and
M. C.
Herbordt
, “
Parallel discrete molecular dynamics simulation with speculation and in-order commitment
,”
J. Comput. Phys.
230
,
6563
(
2011
).
54.
D. A.
Levin
,
Y.
Peres
, and
E. L.
Wilmer
,
Markov Chains and Mixing Times
(
American Mathematical Society
,
2008
).
55.
J. A.
Anderson
,
E.
Jankowski
,
T. L.
Grubb
,
M.
Engel
, and
S. C.
Glotzer
, “
Massively parallel Monte Carlo for many-particle simulations on GPUs
,”
J. Comput. Phys.
254
,
27
(
2013
).
56.
M.
Engel
,
J. A.
Anderson
,
S. C.
Glotzer
,
M.
Isobe
,
E. P.
Bernard
, and
W.
Krauth
, “
Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods
,”
Phys. Rev. E
87
,
042134
(
2013
).
57.
F.
Chen
,
L.
Lovász
, and
I.
Pak
, “
Lifting Markov chains to speed up mixing
,” in
Proceedings of the 17th Annual ACM Symposium on Theory of Computing
(
Association for Computing Machinery, New York
,
1999
), p.
275
.
58.
P.
Diaconis
,
S.
Holmes
, and
R. M.
Neal
, “
Analysis of a nonreversible Markov chain sampler
,”
Ann. Appl. Probab.
10
,
726
(
2000
).
59.
W.
Krauth
, “
Event-chain Monte Carlo: Foundations, applications, and prospects
,”
Front. Phys.
9
,
229
(
2021
).
60.
P.
Höllmer
,
N.
Noirault
,
B.
Li
,
A. C.
Maggs
, and
W.
Krauth
, “
Sparse hard-disk packings and local Markov chains
,”
J. Stat. Phys.
187
,
31
(
2022
).
61.
M.
Michel
,
A.
Durmus
, and
S.
Sénécal
, “
Forward Event-Chain Monte Carlo: Fast sampling by randomness control in irreversible Markov chains
,”
J. Comput. Graph. Stat.
29
,
689
(
2020
).
62.
M.
Klement
and
M.
Engel
, “
Efficient equilibration of hard spheres with Newtonian event chains
,”
J. Chem. Phys.
150
,
174108
(
2019
).
63.
B.
Li
,
S.
Todo
,
A. C.
Maggs
, and
W.
Krauth
, “
Multithreaded event-chain Monte Carlo with local times
,”
Comput. Phys. Commun.
261
,
107702
(
2021
).
64.
B.
Li
,
Y.
Nishikawa
,
A. C.
Maggs
, and
W.
Krauth
, “
Multithreaded event-chain Monte Carlo: Implementation and benchmarks
” (
2022
) (unpublished).
65.
L.
Qin
,
P.
Höllmer
, and
W.
Krauth
, “
Direction-sweep Markov chains
,”
J. Phys. A: Math. Theor.
55
,
105003
(
2022
).
66.
R.
Eppenga
and
D.
Frenkel
, “
Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets
,”
Mol. Phys.
52
,
1303
(
1984
).
67.
P. E.
Brumby
,
A. J.
Haslam
,
E.
de Miguel
, and
G.
Jackson
, “
Subtleties in the calculation of the pressure and pressure tensor of anisotropic particles from volume-perturbation methods and the apparent asymmetry of the compressive and expansive contributions
,”
Mol. Phys.
109
,
169
(
2011
).
68.
E.
de Miguel
and
G.
Jackson
, “
The nature of the calculation of the pressure in molecular simulations of continuous models from volume perturbations
,”
J. Chem. Phys.
125
,
164109
(
2006
).
69.
M. P.
Allen
, “
Evaluation of pressure tensor in constant-volume simulations of hard and soft convex bodies
,”
J. Chem. Phys.
124
,
214103
(
2006
).
70.
J. A.
Zollweg
and
G. V.
Chester
, “
Melting in two dimensions
,”
Phys. Rev. B
46
,
11186
(
1992
).
71.
A.
Jaster
, “
Computer simulations of the two-dimensional melting transition using hard disks
,”
Phys. Rev. E
59
,
2594
(
1999
).
72.
A.
Jaster
, “
The hexatic phase of the two-dimensional hard disks system
,”
Phys. Lett. A
330
,
120
(
2004
).
73.
C. H.
Mak
, “
Large-scale simulations of the two-dimensional melting of hard disks
,”
Phys. Rev. E
73
,
065104
(
2006
).
74.
W.
Qi
,
A. P.
Gantapara
, and
M.
Dijkstra
, “
Two-stage melting induced by dislocations and grain boundaries in monolayers of hard spheres
,”
Soft Matter
10
,
5449
(
2014
).
75.
H.
Weber
,
D.
Marx
, and
K.
Binder
, “
Melting transition in two dimensions: A finite-size scaling analysis of bond-orientational order in hard disks
,”
Phys. Rev. B
51
,
14636
(
1995
).
76.
A. C.
Mitus
,
H.
Weber
, and
D.
Marx
, “
Local structure analysis of the hard-disk fluid near melting
,”
Phys. Rev. E
55
,
6855
(
1997
).
77.
K.
Binder
,
S.
Sengupta
, and
P.
Nielaba
, “
The liquid-solid transition of hard discs: First-order transition or Kosterlitz-Thouless-Halperin-Nelson-Young scenario?
,”
J. Phys.: Condens. Matter
14
,
2323
(
2002
).
78.
R.
Kannan
,
M. W.
Mahoney
, and
R.
Montenegro
, “
Rapid mixing of several Markov chains for a hard-core model
,” in
Proceedings of 14th annual ISAAC, Lecture Notes in Computer Science
(
Springer
,
Berlin, Heidelberg
,
2003
), pp.
663
675
.
79.
A.
Jaster
, “
An improved Metropolis algorithm for hard core systems
,”
Physica A
264
,
134
(
1999
).
80.
B. D.
Lubachevsky
and
F. H.
Stillinger
, “
Geometric properties of random disk packings
,”
J. Stat. Phys.
60
,
561
(
1990
).
81.
J. G.
Propp
and
D. B.
Wilson
, “
Exact sampling with coupled Markov chains and applications to statistical mechanics
,”
Random Struct. Algorithms
9
,
223
(
1996
).
82.
M. F.
Faulkner
,
L.
Qin
,
A. C.
Maggs
, and
W.
Krauth
, “
All-atom computations with irreversible Markov chains
,”
J. Chem. Phys.
149
,
064113
(
2018
).
83.
P.
Höllmer
,
L.
Qin
,
M. F.
Faulkner
,
A. C.
Maggs
, and
W.
Krauth
, “
JeLLyFysh-Version1.0—A Python application for all-atom event-chain Monte Carlo
,”
Comput. Phys. Commun.
253
,
107168
(
2020
).
84.
D. N.
Politis
and
J. P.
Romano
, “
The stationary bootstrap
,”
J. Am. Stat. Assoc.
89
,
1303
(
1994
).
85.
Y.
Nishikawa
,
J.
Takahashi
, and
T.
Takahashi
, “
Stationary bootstrap: a refined error estimation for equilibrium time series
,” arXiv:2112.11837 (
2021
).
86.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
(
1989
).
87.
D. N.
Politis
and
H.
White
, “
Automatic block-length selection for the dependent bootstrap
,”
Econ. Rev.
23
,
53
(
2004
).
88.
A.
Patton
,
D. N.
Politis
, and
H.
White
, “
`Correction to' Automatic block-length selection for the dependent bootstrap'' by D. Politis and H. White
,”
Econ. Rev.
28
,
372
(
2009
).
89.
The url of the repository is https://github.com/jellyfysh/HistoricDisks.
90.
A.
Rohatgi
, Webplotdigitizer: Version 4.5,
2021
.
91.
Y.
Nishikawa
,
W.
Krauth
, and
A. C.
Maggs
, “
Two-dimensional soft spheres - phase diagrams and phase transitions
” (
2022
) (unpublished).
92.
The HDF Group, Hierarchical Data Format, version 5 (1997–2022).
You do not currently have access to this content.