The structure and electronic properties of a molecule at an electrochemical interface are changed by interactions with the electrode surface and the electrolyte solution, which can be significantly modulated by an applied voltage. We present an efficient self-consistent quantum mechanics/molecular mechanics (QM/MM) approach to study a physisorbed molecule at a metal electrode–electrolyte interface under the constant-voltage condition. The approach employs a classical polarizable double electrode model, which enables us to study the QM/MM system in the constant-voltage ensemble. A mean-field embedding approximation is further introduced in order to overcome the difficulties associated with statistical sampling of the electrolyte configurations. The results of applying the method to a test system indicate that the adsorbed molecule is no less or slightly more polarized at the interface than in the bulk electrolyte solution. The geometry of the horizontally adsorbed molecule is modulated by their electrostatic interactions with the polarizable electrode surfaces and also the interactions with cations attracted toward the interface when the adsorbate is reduced. We also demonstrate that the approach can be used to quantitatively evaluate the reorganization energy of a one electron reduction reaction of a molecule in an electrochemical cell.

1.
S.
Kang
,
A. F.
Nieuwenhuis
,
K.
Mathwig
,
D.
Mampallil
,
Z. A.
Kostiuchenko
, and
S. G.
Lemay
,
Faraday Discuss.
193
,
41
(
2016
).
2.
Y.
Wang
,
X.
Shan
, and
N.
Tao
,
Faraday Discuss.
193
,
9
(
2016
).
3.
G. S.
Kulkarni
,
W.
Zang
, and
Z.
Zhong
,
Acc. Chem. Res.
49
,
2578
(
2016
).
4.
R. L.
Gieseking
,
M. A.
Ratner
, and
G. C.
Schatz
,
Faraday Discuss.
199
,
547
(
2017
).
5.
M. A.
Edwards
,
D. A.
Robinson
,
H.
Ren
,
C. G.
Cheyne
,
C. S.
Tan
, and
H. S.
White
,
Faraday Discuss.
210
,
9
(
2018
).
6.
J.
Hutter
and
D.
Marx
,
Ab Initio Molecular Dynamics
(
Cambridge University Press
,
Cambridge, UK
,
2009
).
7.
S.
Corni
and
J.
Tomasi
,
J. Chem. Phys.
114
,
3739
(
2001
).
8.
S.
Ghosh
,
S.
Horvath
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Chem. Theory Comput.
10
,
2091
(
2014
).
9.
T.
Hansen
and
K. V.
Mikkelsen
,
Theor. Chem. Acc.
111
,
122
(
2004
).
10.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
11.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
12.
V.
Arcisauskaite
,
J.
Kongsted
,
T.
Hansen
, and
K. V.
Mikkelsen
,
Chem. Phys. Lett.
470
,
285
(
2009
).
13.
T.
Hansen
,
T.
Hansen
,
V.
Arcisauskaite
,
K. V.
Mikkelsen
,
J.
Kongsted
, and
V.
Mujica
,
J. Phys. Chem. C
114
,
20870
(
2010
).
14.
S. M.
Morton
and
L.
Jensen
,
J. Chem. Phys.
133
,
074103
(
2010
).
15.
Z.
Rinkevicius
,
X.
Li
,
J. A. R.
Sandberg
,
K. V.
Mikkelsen
, and
H.
Ågren
,
J. Chem. Theory Comput.
10
,
989
(
2014
).
16.
D.
Golze
,
M.
Iannuzzi
,
M.-T.
Nguyen
,
D.
Passerone
, and
J.
Hutter
,
J. Chem. Theory Comput.
9
,
5086
(
2013
).
17.
J. I.
Siepmann
and
M.
Sprik
,
J. Chem. Phys.
102
,
511
(
1995
).
18.
M.
Klähn
,
S.
Braun-Sand
,
E.
Rosta
, and
A.
Warshel
,
J. Phys. Chem. B
109
,
15645
(
2005
).
19.
T.
Yamamoto
,
J. Chem. Phys.
129
,
244104
(
2008
).
20.
T.
Kosugi
and
S.
Hayashi
,
J. Chem. Theory Comput.
8
,
322
(
2012
).
21.
H.
Nakano
and
H.
Sato
,
J. Chem. Phys.
146
,
154101
(
2017
).
22.
H.
Nakano
and
H.
Sato
,
J. Chem. Phys.
151
,
164123
(
2019
).
23.
H.
Nakano
and
T.
Yamamoto
,
J. Chem. Phys.
136
,
134107
(
2012
).
24.
H.
Nakano
and
T.
Yamamoto
,
J. Chem. Theory Comput.
9
,
188
(
2013
).
25.
F.
Hirata
,
Molecular Theory of Solvation
(
Kluwer
,
New York
,
2004
).
26.
H.
Sato
,
A.
Kovalenko
, and
F.
Hirata
,
J. Chem. Phys.
112
,
9463
(
2000
).
27.
S.
Nishihara
and
M.
Otani
,
Phys. Rev. B
96
,
115429
(
2017
).
28.
K.
Letchworth-Weaver
and
T.
Arias
,
Phys. Rev. B
86
,
075140
(
2012
).
29.
P. S.
Guin
,
S.
Das
, and
P.
Mandal
,
Int. J. Electrochem.
2011
,
816202
.
30.
G. T.
Krayz
,
S.
Bittner
,
A.
Dhiman
, and
J. Y.
Becker
,
Chem. Rec.
21
,
2332
(
2021
).
31.
K.
Honda
,
Y.
Waki
,
A.
Matsumoto
,
B.
Kondo
, and
Y.
Shimai
,
Diamond Relat. Mater.
107
,
107900
(
2020
).
32.
J. R. T.
Johnsson Wass
,
E.
Ahlberg
,
I.
Panas
, and
D. J.
Schiffrin
,
J. Phys. Chem. A
110
,
2005
(
2006
).
33.
H.
Nakano
and
T.
Yamamoto
,
Chem. Phys. Lett.
546
,
80
(
2012
).
34.
H.-K.
Lim
,
H.
Lee
, and
H.
Kim
,
J. Chem. Theory Comput.
12
,
5088
(
2016
).
35.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
36.
H.
Heinz
,
R. A.
Vaia
,
B. L.
Farmer
, and
R. R.
Naik
,
J. Phys. Chem. C
112
,
17281
(
2008
).
37.
K.
Takahashi
,
H.
Nakano
, and
H.
Sato
,
J. Chem. Phys.
153
,
054126
(
2020
).
38.
J.
Oshiki
,
H.
Nakano
, and
H.
Sato
,
J. Chem. Phys.
154
,
144107
(
2021
).
39.
H. J.
Böhm
,
I. R.
McDonald
, and
P. A.
Madden
,
Mol. Phys.
49
,
347
(
1983
).
40.
A.
Morita
and
S.
Kato
,
J. Am. Chem. Soc.
119
,
4021
(
1997
).
41.
A.
Morita
and
S.
Kato
,
J. Chem. Phys.
108
,
6809
(
1998
).
42.
H.
Nakano
,
T.
Yamamoto
, and
S.
Kato
,
J. Chem. Phys.
132
,
044106
(
2010
).
43.
T.
Tsuneda
,
T.
Suzumura
, and
K.
Hirao
,
J. Chem. Phys.
110
,
10664
(
1999
).
44.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
45.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
,
J. Chem. Phys.
152
,
154102
(
2020
).
46.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
47.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
48.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
49.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, gaussian 16, Revision C.01,
Gaussian Inc.
,
Wallingford CT
,
2016
.
50.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
51.
B. T.
Thole
,
Chem. Phys.
59
,
341
(
1981
).
52.
J. K.
Nagle
,
J. Am. Chem. Soc.
112
,
4741
(
1990
).
53.
J.
Caldwell
,
L. X.
Dang
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
112
,
9144
(
1990
).
54.
W.
Smith
,
T. R.
Forester
, and
I. T.
Todorov
, The DL_POLY Classic (1.10) User Manual, CCLRC,
Daresbury Laboratory
,
Daresbury, Warrington, UK
,
2017
.
55.
M.
Souaille
and
B.
Roux
,
Comput. Phys. Commun.
135
,
40
(
2001
).
56.
C. I.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P. A.
Kollman
,
J. Phys. Chem.
97
,
10269
(
1993
).
57.
S.
Ten-no
,
F.
Hirata
, and
S.
Kato
,
J. Chem. Phys.
100
,
7443
(
1994
).
58.
H. C.
Anderson
,
J. Comput. Phys
52
,
24
(
1983
).
59.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
60.
H.
Hu
,
Z.
Lu
,
J. M.
Parks
,
S. K.
Burger
, and
W.
Yang
,
J. Chem. Phys.
128
,
034105
(
2008
).
61.
C.
Batchelor-McAuley
,
E.
Laborda
,
M. C.
Henstridge
,
R.
Nissim
, and
R. G.
Compton
,
Electrochim. Acta
88
,
895
(
2013
).
62.
J.
Blumberger
,
Chem. Rev.
115
,
11191
(
2015
).
63.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
110
,
4703
(
1999
).
64.
Q.
Fu
,
J.
Yang
, and
X.-B.
Wang
,
J. Phys. Chem. A
115
,
3201
(
2011
).
65.
S. K.
Reed
,
P. A.
Madden
, and
A.
Papadopoulos
,
J. Chem. Phys.
128
,
124701
(
2008
).
66.
R. A.
Marcus
,
J. Chem. Phys.
43
,
679
(
1965
).
67.
T. W.
Rosanske
and
D. H.
Evans
,
J. Electroanal. Chem. Interfacial Electrochem.
72
,
277
(
1976
).
68.
R.
Samuelsson
and
M.
Sharp
,
Electrochim. Acta
23
,
315
(
1978
).
69.
C.
Rüssel
and
W.
Jaenicke
,
J. Electroanal. Chem. Interfacial Electrochem.
180
,
205
(
1984
).
70.
K.
Takahashi
,
H.
Nakano
, and
H.
Sato
,
J. Chem. Phys.
157
,
014111
(
2022
).

Supplementary Material

You do not currently have access to this content.