A systematic study is made of the accuracy and efficiency of a number of existing quadrature schemes for molecular Kohn–Sham Density-Functional Theory (DFT) using 408 molecules and 254 chemical reactions. Included are the fixed SG-x (x = 0–3) grids of Gill et al., Dasgupta, and Herbert, the 3-zone grids of Treutler and Ahlrichs, a fixed five-zone grid implemented in Molpro, and a new adaptive grid scheme. While all methods provide a systematic reduction of errors upon extension of the grid sizes, significant differences are observed in the accuracies for similar grid sizes with various approaches. For the tests in this work, the SG-x fixed grids are less suitable to achieve high accuracies in the DFT integration, while our new adaptive grid performed best among the schemes studied in this work. The extra computational time to generate the adaptive grid scales linearly with molecular size and is negligible compared with the time needed for the self-consistent field iterations for large molecules. A comparison of the grid accuracies using various density functionals shows that meta-GGA functionals need larger integration grids than GGA functionals to reach the same degree of accuracy, confirming previous investigations of the numerical stability of meta-GGA functionals. On the other hand, the grid integration errors are almost independent of the basis set, and the basis set errors are mostly much larger than the errors caused by the numerical integrations, even when using the smallest grids tested in this work.

1.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
3.
F. M.
Bickelhaupt
and
E. J.
Baerends
, “
Kohn-Sham density functional theory: Predicting and understanding chemistry
,” in
Reviews in Computational Chemistry
(
John Wiley & Sons
,
2000
), pp.
1
86
.
4.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
, “
Achieving linear scaling in exchange-correlation density functional quadratures
,”
Chem. Phys. Lett.
257
,
213
(
1996
).
5.
C.
Ochsenfeld
,
J.
Kussmann
, and
D.
Lambrecht
, “Linear-scaling methods in quantum chemistry,” in (
Wiley-VCH, John Wiley and Sons, Inc.
,
2007
), Chap. 1.
6.
D. R.
Bowler
and
T.
Miyazaki
, “
O(n) methods in electronic structure calculations
,”
Rep. Prog. Phys.
75
,
036503
(
2012
).
7.
A. D.
Becke
, “
Perspective: Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
,
18A301
(
2014
).
8.
N.
Mardirossian
and
M.
Head-Gordon
, “
Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals
,”
Mol. Phys.
115
,
2315
(
2017
).
9.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
, “
Dispersion-corrected mean-field electronic structure methods
,”
Chem. Rev.
116
,
5105
(
2016
).
10.
A.
Heßelmann
, “
Polarisabilities of long conjugated chain molecules with density functional response methods: The role of coupled and uncoupled response
,”
J. Chem. Phys.
142
,
164102
(
2015
).
11.
O.
Gritsenko
and
E. J.
Baerends
, “
Asymptotic correction of the exchange-correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations
,”
J. Chem. Phys.
121
,
655
(
2004
).
12.
D. J.
Tozer
and
N. C.
Handy
, “
Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities
,”
J. Chem. Phys.
109
,
10180
(
1998
).
13.
M.
Städele
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
, “
Exact exchange Kohn-Sham formalism applied to semiconductors
,”
Phys. Rev. Lett.
79
,
2089
(
1997
).
14.
R.
Strange
,
F. R.
Manby
, and
P. J.
Knowles
, “
Automatic code generation in density functional theory
,”
Comput. Phys. Commun.
136
,
310
(
2001
).
15.
S.
Lehtola
,
C.
Steigemann
,
M. J. T.
Oliveira
, and
M. A. L.
Marques
, “
Recent developments in libxc—A comprehensive library of functionals for density functional theory
,”
SoftwareX
7
,
1
5
(
2018
).
16.
J. A.
Pople
,
P. M. W.
Gill
, and
B. G.
Johnson
, “
Kohn–Sham density–functional theory within a finite basis set
,”
Chem. Phys. Lett.
199
,
557
(
1992
).
17.
S.
Lehtola
,
F.
Blockhuys
, and
C.
Van Alsenoy
, “
An overview of self-consistent field calculations within finite basis sets
,”
Molecules
25
,
1218
(
2020
).
18.
A. V.
Arbuznikov
and
M.
Kaupp
, “
The self-consistent implementation of exchange-correlation functionals depending on the local kinetic energy density
,”
Chem. Phys. Lett.
381
,
495
(
2003
).
19.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
,
2547
(
1988
).
20.
J. I.
Rodríguez
,
D. C.
Thompson
,
P. W.
Ayers
, and
A. M.
Köster
, “
Numerical integration of exchange- correlation energies and potentials using transformed sparse grids
,”
J. Chem. Phys.
128
,
224103
(
2008
).
21.
T. L.
Beck
, “
Real–space mesh techniques in density-functional theory
,”
Rev. Mod. Phys.
72
,
1041
(
2000
).
22.
J.
Kong
,
S. T.
Brown
, and
L.
Fusti-Molnar
, “
Efficient computation of the exchange-correlation contribution in the density functional theory through multiresolution
,”
J. Chem. Phys.
124
,
094109
(
2006
).
23.
N. J.
Russ
,
C.-m.
Chang
, and
J.
Kong
, “
Fast computation of DFT nuclear gradient with multiresolution
,”
Can. J. Chem.
89
,
657
662
(
2011
).
24.
C.-M.
Chang
,
N. J.
Russ
, and
J.
Kong
, “
Efficient and accurate numerical integration of exchange-correlation density functionals
,”
Phys. Rev. A
84
,
022504
(
2011
).
25.
K. S.
Werpetinski
and
M.
Cook
, “
Grid–free density–functional technique with analytical energy gradients
,”
Phys. Rev. A
52
,
R3397
(
1995
).
26.
K. S.
Werpetinski
and
M.
Cook
, “
A new grid-free density-functional technique: Application to the torsional energy surfaces of ethane, hydrazine, and hydrogen peroxide
,”
J. Chem. Phys.
106
,
7124
(
1997
).
27.
Y. C.
Zheng
and
J.
Almlöf
, “
Density functionals without meshes and grids
,”
Chem. Phys. Lett.
214
,
397
(
1993
).
28.
Y. C.
Zhenh
and
J. E.
Almlöf
, “
A grid–free DFT implementation of non–local functionals and analytical energy derivatives
,”
J. Mol. Struct. (Theochem)
388
,
277
(
1996
).
29.
K. R.
Glaesemann
and
M. S.
Gordon
, “
Investigation of a grid–free density functional theory (DFT) approach
,”
J. Chem. Phys.
108
,
9959
(
1998
).
30.
K. R.
Glaesemann
and
M. S.
Gordon
, “
Evaluation of gradient corrections in grid–free density functional theory
,”
J. Chem. Phys.
110
,
6580
(
1999
).
31.
K. R.
Glaesemann
and
M. S.
Gordon
, “
Auxiliary basis sets for grid–free density functional theory
,”
J. Chem. Phys.
112
,
10738
(
2000
).
32.
G.
Berghold
,
J.
Hütter
, and
M.
Parrinello
, “
Grid–free DFT implementation of local and gradient–corrected XC functionals
,”
Theor. Chem. Acc.
99
,
344
(
1998
).
33.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
34.
C. W.
Murray
,
N. C.
Handy
, and
G. J.
Laming
, “
Quadrature schemes for integrals of density functional theory
,”
Mol. Phys.
78
,
997
(
1993
).
35.
P. M. W.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
, “
A standard grid for density functional calculations
,”
Chem. Phys. Lett.
209
,
506
(
1993
).
36.
O.
Treutler
and
R.
Ahlrichs
, “
Efficient molecular numerical integration schemes
,”
J. Chem. Phys.
102
,
346
(
1995
).
37.
M. E.
Mura
and
P. J.
Knowles
, “
Improved radial grids for quadrature in molecular density-functional calculations
,”
J. Chem. Phys.
104
,
9848
9858
(
1996
).
38.
R.
Lindh
,
P. Å.
Malmqvist
, and
L.
Gagliardi
, “
Molecular integrals by numerical quadrature. I. Radial integration
,”
Theor. Chem. Acc.
106
,
178
(
2001
).
39.
P. M. W.
Gill
and
S.-H.
Chien
, “
Radial quadrature for multiexponential integrands
,”
J. Comput. Chem.
24
,
732
(
2003
).
40.
A.
El-Sherbiny
and
R. A.
Poirier
, “
An evaluation of the radial part of numerical integration commonly used in DFT
,”
J. Comput. Chem.
25
,
1378
(
2004
).
41.
J.
Gräfenstein
and
D.
Cremer
, “
Efficient density-functional theory integrations by locally augmented radial grids
,”
J. Chem. Phys.
127
,
164113
(
2007
).
42.
K.
Kakhiani
,
K.
Tsereteli
, and
P.
Tsereteli
, “
A program to generate a basis set adaptive radial quadrature grid for density functional theory
,”
Comput. Phys. Commun.
180
,
256
(
2009
).
43.
M.
Mitani
, “
An application of double exponential formula to radial quadrature grid in density functional calculation
,”
Theor. Chem. Acc.
130
,
645
(
2011
).
44.
M.
Mitani
and
Y.
Yoshioka
, “
Numerical integration of atomic electron density with double exponential formula for density functional calculation
,”
Theor. Chem. Acc.
131
,
1169
(
2012
).
45.
V. I.
Lebedev
, “
Values of the nodes and weights of ninth to seventeenth order gauss-markov quadrature formulae invariant under the octahedron group with inversion
,”
USSR Comp. Math. Mathemat. Phys.
15
(
1
),
44
51
(
1975
).
46.
V. I.
Lebedev
, “
Quadratures on a sphere
,”
USSR Comp. Math. and Mathemat. Phys.
16
(
2
),
10
24
(
1976
).
47.
V. I.
Lebedev
, “
Spherical quadrature formulas exact to orders 25-29
,”
Siberian Mathemat. J.
18
,
99107
(
1977
).
48.
V. I.
Lebedev
and
A. L.
Skorokhodov
,
Russ. Acad. Sci. Docl. Math.
45
,
587
(
1992
).
49.
C.
Daul
and
S.
Daul
, “
Symmetrical nonproduct quadrature rules for a fast calculation of multicenter integrals
,”
Int. J. Quantum Chem.
61
,
219
(
1997
).
50.
V. I.
Lebdedev
and
D. N.
Laikov
, “
A quadrature formula for the sphere of the 131st algebraic order of accuracy
,”
Dokl. Math.
59
,
477
(
1999
).
51.
C.
Ahrens
and
G.
Beylkin
, “
Rotationally invariant quadratures for the sphere
,”
Proc. R. Soc. A
465
,
3103
(
2009
).
52.
S.-H.
Chien
and
P. M. W.
Gill
, “
SG-0: A small standard grid for DFT quadrature on large systems
,”
J. Comput. Chem.
27
,
730
(
2006
).
53.
S.
Dasgupta
and
J. M.
Herbert
, “
Standard grids for high-precision integration of modern density functionals: SG-2 and SG-3
,”
J. Comput. Chem.
38
,
869
(
2017
).
54.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
, “
The Orca quantum chemistry program package
,”
J. Chem. Phys.
152
,
224108
(
2020
).
55.
F.
Neese
, ORCA–An ab initio, DFT and semiempirical SCF-MO package. Version 4.2.1, Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz, 45470 Mühlheim, Germany.
56.
M.
Krack
and
A. M.
Köster
, “
An adaptive numerical integrator for molecular integrals
,”
J. Chem. Phys.
108
,
3226
(
1998
).
57.
A. M.
Köster
,
R.
Flores-Moreno
, and
J. U.
Reveles
, “
Efficient and reliable numerical integration of exchange-correlation energies and potentials
,”
J. Chem. Phys.
121
,
681
(
2004
).
58.
S.
Lehtola
and
M. A. L.
Marques
, “
Many recent density functionals are numerically ill–behaved
,”
J. Chem. Phys.
157
,
174114
(
2022
).
59.
E. R.
Johnson
,
A. D.
Becke
,
C. D.
Sherrill
, and
G. A.
DiLabio
, “
Oscillations in meta-generalized-gradient approximation potential energy surfaces for dispersion-bound complexes
,”
J. Chem. Phys.
131
,
034111
(
2009
).
60.
H.-J.
Werner
,
P. J.
Knowles
,
A.
Hesselmann
,
G.
Knizia
,
D. A.
Kreplin
,
Q.
Ma
, et al., MOLPRO, version 2022.1, a package of ab initio programs,
2022
, see http://www.molpro.net.
61.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
62.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
 III
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
63.
L.
Goerigk
and
S.
Grimme
, “
Efficient and accurate double-hybrid-meta-GGA density functionals evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions
,”
J. Chem. Theory Comput.
7
,
291
(
2011
).
64.
N. C.
Handy
and
S. F.
Boys
, “
Integration points for the reduction of boundary conditions
,”
Theor. Chim. Acta
31
,
195
(
1973
).
65.
H.
Laqua
,
J.
Kussmann
, and
C.
Ochsenfeld
, “
An improved molecular partitioning scheme for numerical quadratures in density functional theory
,”
J. Chem. Phys.
149
,
204111
(
2018
).
66.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
, “
Electronic structure calculations on workstation computers: The program system TURBOMOLE
,”
Chem. Phys. Lett.
162
,
165
(
1989
).
67.
M.
Head–Gordon
 et al., “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
(
2015
).
68.
T.
Van Voorhis
and
G. E.
Scuseria
, “
A novel form for the exchange–correlation energy functional
,”
J. Chem. Phys.
109
,
400
(
1998
).
69.
H.
Takahashi
and
M.
Mori
, “
Double exponential formulas for numerical integration
,”
Publ. RIMS, Kyoto Univ.
9
,
721
(
1974
).
70.
V.
Termath
and
J.
Sauer
, “
Optimized molecular integration schemes for density functional theory ab initio molecular dynamics simulations
,”
Chem. Phys. Lett.
255
,
187
(
1996
).
71.
J.
Lehtola
,
M.
Hakala
,
A.
Sakko
, and
K.
Hämäläinen
, “
Erkale-a flexible program package for x-ray properties of atoms and molecules
,”
J. Comput. Chem.
33
,
1572
1585
(
2012
).
72.
E.
Rudberg
,
E. H.
Rubensson
, and
P.
Sałek
, “
Kohn-Sham density functional theory electronic structure calculations with linearly scaling computational time and memory usage
,”
J. Chem. Theory Comput.
7
,
340
(
2011
).
73.
M.
Kaupp
,
A. V.
Arbuznikov
,
A.
Heßelmann
, and
A.
Görling
, “
Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact–exchange density–functional and post-Hartree–Fock methods
,”
J. Chem. Phys.
132
,
184107
(
2010
).
74.
E.
Clementi
and
D.
Raimondi
, IBM Res. Note, NJ–27 (
1963
).
75.
R. J.
Barlow
,
Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences
(
Wiley
,
1993
).
76.
G.
Knizia
, private communication (
2014
).
77.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
(
1992
).
78.
J. C.
Slater
, “
Atomic shielding constants
,”
Phys. Rev.
36
,
57
(
1930
).
79.
A. R.
Leach
,
Molecular Modelling: Principles and Applications
(
Addison Wesley Publishing Company
,
1997
).
80.
W.
Kahan
, “
Further remarks on reducing truncation errors
,”
Commun. ACM
8
,
40
(
1965
).
81.
Y.
Guo
,
K.
Sivalingam
,
E. F.
Valeev
, and
F.
Neese
, “
SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory
,”
J. Chem. Phys.
144
,
094111
(
2016
).
82.
L.
Goerigk
and
S.
Grimme
, “
A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
13
,
6670
(
2011
).
83.
S.
Heo
and
Y.
Xu
, “
Constructing fully symmetric cubature formulae for the sphere
,”
Math. Comput.
70
,
269
(
2001
).
84.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
85.
F.
Weigend
, “
Hartree-Fock exchange fitting basis sets for H to Rn
,”
J. Comput. Chem.
29
,
167
175
(
2008
).
86.
T. H.
Dunning
, Jr.
, “
Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first–row atoms
,”
J. Chem. Phys.
53
,
2823
(
1970
).
87.
T. H.
Dunning
, Jr.
, “
Gaussian basis functions for use in molecular calculations. III. Contraction of (10s6p) atomic basis sets for the first–row atoms
,”
J. Chem. Phys.
55
,
716
(
1971
).
88.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
89.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first–row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
(
1992
).
90.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
91.
P.
Elliott
and
K.
Burke
, “
Non-empirical derivation of the parameter in the B88 exchange functional
,”
Can. J. Chem.
87
,
1485
(
2009
).
92.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
93.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
94.
J. P.
Perdew
,
V. N.
Staroverov
,
J.
Tao
, and
G. E.
Scuseria
, “
Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction
,”
Phys. Rev. A
78
,
052513
(
2008
).
95.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Accurate and numerically efficient r2SCAN meta-generalized gradient approximation
,”
J. Phys. Chem. Lett.
11
,
8208
(
2020
).
96.
Y.
Zhao
and
D. G.
Truhlar
, “
The Mo6 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four Mo6-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
(
2006
).
97.
A.
Heßelmann
, “
Assessment of a nonlocal correction scheme to semilocal density functional theory methods
,”
J. Chem. Theory Comput.
9
,
273
(
2013
).
98.
J.
Friedrich
and
J.
Hänchen
, “
Incremental CCSD(T)(F12*)|MP2: A black box method to obtain highly accurate reaction energies
,”
J. Chem. Theory Comput.
9
,
5381
(
2013
).
99.
J.
Friedrich
, “
Efficient calculation of accurate reaction energies – assessment of different models in electronic structure theory
,”
J. Chem. Theory Comput.
11
,
3596
(
2015
).
100.
G.
Jansen
, “
Symmetry–adpated perturbation theory based on density functional theory for noncovalent interactions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
127
(
2013
).
101.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
, “
Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials
,”
Theor. Chem. Acc.
97
,
119
(
1997
).
102.
D. J.
Tozer
,
M. E.
Mura
,
R. D.
Amos
, and
N. C.
Handy
, “
Implementation of analytic derivative density functional theory codes on scalar and parallel architectures
,”
AIP Conf. Proc.
330
,
3
(
1995
).

Supplementary Material

You do not currently have access to this content.