Allosteric signaling within multidomain proteins is a driver of communication between spatially distant functional sites. Understanding the mechanism of allosteric coupling in large multidomain proteins is the most promising route to achieving spatial and temporal control of the system. The recent explosion of CRISPR-Cas9 applications in molecular biology and medicine has created a need to understand how the atomic level protein dynamics of Cas9, which are the driving force of its allosteric crosstalk, influence its biophysical characteristics. In this study, we used a synergistic approach of nuclear magnetic resonance (NMR) and computation to pinpoint an allosteric hotspot in the HNH domain of the thermostable GeoCas9. We show that mutation of K597 to alanine disrupts a salt-bridge network, which in turn alters the structure, the timescale of allosteric motions, and the thermostability of the GeoHNH domain. This homologous lysine-to-alanine mutation in the extensively studied mesophilic S. pyogenes Cas9 similarly alters the dynamics of the SpHNH domain. We have previously demonstrated that the alteration of allostery via mutations is a source for the specificity enhancement of SpCas9 (eSpCas9). Hence, this may also be true in GeoCas9.

1.
J. A.
Doudna
, “
The promise and challenge of therapeutic genome editing
,”
Nature
578
,
229
236
(
2020
).
2.
A.
Mir
,
A.
Edraki
,
J.
Lee
, and
E. J.
Sontheimer
, “
Type II-C CRISPR-Cas9 biology, mechanism, and application
,”
ACS Chem. Biol.
13
,
357
365
(
2018
).
3.
F.
Jiang
and
J. A.
Doudna
, “
The structural biology of CRISPR-Cas systems
,”
Curr. Opin. Struct. Biol.
30
,
100
111
(
2015
).
4.
L. B.
Harrington
 et al, “
A thermostable Cas9 with increased lifetime in human plasma
,”
Nat. Commun.
8
,
1424
(
2017
).
5.
S. H.
Sternberg
,
B.
LaFrance
,
M.
Kaplan
, and
J. A.
Doudna
, “
Conformational control of DNA target cleavage by CRISPR–Cas9
,”
Nature
527
,
110
113
(
2015
).
6.
J. S.
Chen
 et al, “
Enhanced proofreading governs CRISPR–Cas9 targeting accuracy
,”
Nature
550
,
407
410
(
2017
).
7.
K. W.
East
 et al, “
Allosteric motions of the CRISPR-Cas9 HNH nuclease probed by NMR and molecular dynamics
,”
J. Am. Chem. Soc.
142
,
1348
(
2020
).
8.
L.
Nierzwicki
 et al, “
Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9
,”
Elife
10
,
e73601
(
2021
).
9.
Ł.
Nierzwicki
,
P. R.
Arantes
,
A.
Saha
, and
G.
Palermo
, “
Establishing the allosteric mechanism in CRISPR-Cas9
,”
Wiley Interdiscip. Rev. Comput. Mol. Sci.
11
,
e1503
(
2021
).
10.
H. B.
Belato
 et al, “
Structural and dynamic insights into the HNH nuclease of divergent Cas9 species
,”
J. Struct. Biol.
214
,
107814
(
2022
).
11.
I. M.
Slaymaker
 et al, “
Rationally engineered Cas9 nucleases with improved specificity
,”
Science
351
,
84
88
(
2016
).
12.
C. N.
Pace
and
J. M.
Scholtz
, “
A helix propensity scale based on experimental studies of peptides and proteins
,”
Biophys. J.
75
,
422
427
(
1998
).
13.
M.
Jinek
 et al, “
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
,”
Science
343
,
1247997
(
2014
).
14.
G.
Palermo
,
Y.
Miao
,
R. C.
Walker
,
M.
Jinek
, and
J. A.
McCammon
, “
Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations
,”
ACS Cent. Sci.
2
,
756
763
(
2016
).
15.
C.
Huai
 et al, “
Structural insights into DNA cleavage activation of CRISPR-Cas9 system
,”
Nat. Commun.
8
,
1375
(
2017
).
16.
G.
Palermo
 et al, “
Protospacer adjacent motif-induced allostery activates CRISPR-Cas9
,”
J. Am. Chem. Soc.
139
,
16028
16031
(
2017
).
17.
G.
Palermo
 et al, “
Key role of the REC lobe during CRISPR-Cas9 activation by ‘sensing,’ ‘regulating,’ and ‘locking’ the catalytic HNH domain
,”
Q. Rev. Biophys.
51
,
e91
(
2018
).
18.
V.
Nguyen
 et al, “
Evolutionary drivers of thermoadaptation in enzyme catalysis
,”
Science
355
,
289
294
(
2017
).
19.
H. N.
Motlagh
,
J. O.
Wrabl
,
J.
Li
, and
V. J.
Hilser
, “
The ensemble nature of allostery
,”
Nature
508
,
331
339
(
2014
).
20.
C. M.
Petit
,
J.
Zhang
,
P. J.
Sapienza
,
E. J.
Fuentes
, and
A. L.
Lee
, “
Hidden dynamic allostery in a PDZ domain
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
18249
18254
(
2009
).
21.
A. J.
Wand
, “
The dark energy of proteins comes to light: Conformational entropy and its role in protein function revealed by NMR relaxation
,”
Curr. Opin. Struct. Biol.
23
,
75
81
(
2013
).
22.
S.-R.
Tzeng
and
C. G.
Kalodimos
, “
Protein activity regulation by conformational entropy
,”
Nature
488
,
236
240
(
2012
).
23.
F.
Delaglio
 et al, “
NMRPipe: A multidimensional spectral processing system based on UNIX pipes
,”
J. Biomol. NMR
6
,
277
293
(
1995
).
24.
W.
Lee
,
M.
Tonelli
, and
J. L.
Markley
, “
NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy
,”
Bioinformatics
31
,
1325
1327
(
2015
).
25.
J. P.
Loria
,
M.
Rance
, and
A. G.
Palmer
, “
A relaxation-compensated Carr–Purcell–Meiboom–Gill sequence for characterizing chemical exchange by NMR spectroscopy
,”
J. Am. Chem. Soc.
121
,
2331
2332
(
1999
).
26.
M.
Bieri
,
E. J.
d’Auvergne
, and
P. R.
Gooley
, “
relaxGUI: A new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins
,”
J. Biomol. NMR
50
,
147
155
(
2011
).
27.
Ł.
Nierzwicki
 et al, “
Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR–Cas9
,”
Nat. Catal.
5
,
912
922
(
2022
).
28.
W.
Kabsch
, “
XDS
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
66
,
125
132
(
2010
).
29.
M. D.
Winn
 et al, “
Overview of the CCP4 suite and current developments
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
67
,
235
242
(
2011
).
30.
D.
Liebschner
 et al, “
Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
75
,
861
877
(
2019
).
31.
P.
Emsley
,
B.
Lohkamp
,
W. G.
Scott
, and
K.
Cowtan
, “
Features and development of Coot
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
66
,
486
501
(
2010
).
32.
J. A.
Maier
 et al, “
ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB
,”
J. Chem. Theory Comput.
11
,
3696
3713
(
2015
).
33.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
34.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
35.
al, C. D. e
, AMBER 20,
University of California
,
San Francisco
,
2020
.

Supplementary Material

You do not currently have access to this content.