Reaction-diffusion systems involving ionic species are susceptible to an externally applied electric field. Depending on the charges on the ionic species and the intensity of the applied electric field, diverse spatiotemporal patterns can emerge. We here considered two prototypical reaction-diffusion systems that follow activator-inhibitor kinetics: the photosensitive chlorine dioxide-iodine-malonic acid (CDIMA) reaction and the Brusselator model. By theoretical investigation and numerical simulations, we unravel how and to what extent an externally applied electric field can induce and modify the dynamics of these two systems. Our results show that both the uni- and bi-directional electric fields may induce Turing-like stationary patterns from a homogeneous uniform state resulting in horizontal, vertical, or bent stripe-like inhomogeneity in the photosensitive CDIMA system. In contrast, in the Brusselator model, for the activator and the inhibitor species having the same positive or negative charges, the externally applied electric field cannot develop any spatiotemporal instability when the diffusion coefficients are identical. However, various spatiotemporal patterns emerge for the same opposite charges of the interacting species, including moving spots and stripe-like structures, and a phenomenon of wave-splitting is observed. Moreover, the same sign and different magnitudes of the ionic charges can give rise to Turing-like stationary patterns from a homogeneous, stable, steady state depending upon the intensity of the applied electric field in the case of the Brusselator model. Our findings open the possibilities for future experiments to verify the predictions of electric field-induced various spatiotemporal instabilities in experimental reaction-diffusion systems.

1.
I.
Prigogine
and
R.
Lefever
,
J. Chem. Phys.
48
,
1695
(
1968
).
2.
M.
Cross
and
H.
Greenside
,
Pattern Formation and Dynamics in Nonequilibrium Systems
(
Cambridge University Press
,
2009
).
3.
I. R.
Epstein
and
J. A.
Pojman
,
An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos
(
Oxford University Press
,
New York
,
1998
).
4.
P. K.
Maini
,
K. J.
Painter
, and
H.
Nguyen Phong Chau
,
J. Chem. Soc., Faraday Trans.
93
,
3601
(
1997
).
5.
S.
Kondo
and
T.
Miura
,
Science
329
,
1616
(
2010
).
6.
V.
Castets
,
E.
Dulos
,
J.
Boissonade
, and
P.
De Kepper
,
Phys. Rev. Lett.
64
,
2953
(
1990
).
7.
F.
Sagués
,
J. M.
Sancho
, and
J.
García-Ojalvo
,
Rev. Mod. Phys.
79
,
829
(
2007
).
8.
A. M.
Turing
,
Philos. Trans. R. Soc. London, Ser. B
237
,
37
(
1952
).
9.
I.
Lengyel
,
S.
Kádár
, and
I. R.
Epstein
,
Phys. Rev. Lett.
69
,
2729
(
1992
).
10.
I.
Lengyel
and
I. R.
Epstein
,
Acc. Chem. Res.
26
,
235
(
1993
).
11.
B.
Rudovics
,
E.
Barillot
,
P. W.
Davies
,
E.
Dulos
,
J.
Boissonade
, and
P.
De Kepper
,
J. Phys. Chem. A
103
,
1790
(
1999
).
12.
J.
Horváth
,
I.
Szalai
, and
P.
De Kepper
,
Science
324
,
772
(
2009
).
13.
J.
Carballido-Landeira
and
A. P.
Muñuzuri
,
Langmuir
31
,
3021
(
2015
).
14.
B.
Dúzs
,
P.
De Kepper
, and
I.
Szalai
,
ACS Omega
4
,
3213
(
2019
).
15.
M.
Dolnik
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
,
Phys. Rev. E
63
,
026101
(
2001
).
16.
P.
Ghosh
,
S.
Sen
,
S. S.
Riaz
, and
D. S.
Ray
,
Phys. Rev. E
79
,
056216
(
2009
).
17.
P.
Ghosh
and
D. S.
Ray
,
J. Chem. Phys.
135
,
104112
(
2011
).
18.
R.
Nagao
,
I. R.
Epstein
, and
M.
Dolnik
,
J. Phys. Chem. A
117
,
9120
(
2013
).
19.
A.
Preska Steinberg
,
I. R.
Epstein
, and
M.
Dolnik
,
J. Phys. Chem. A
118
,
2393
(
2014
).
20.
R.
Nagao
,
R. C. C.
de Miranda
,
I. R.
Epstein
, and
M.
Dolnik
,
J. Phys. Chem. A
123
,
992
(
2019
).
21.
S. S.
Riaz
,
S.
Dutta
,
S.
Kar
, and
D. S.
Ray
,
Eur. Phys. J. B
47
,
255
(
2005
).
22.
S.
Paul
,
S.
Ghosh
, and
D. S.
Ray
,
Phys. Rev. E
94
,
062217
(
2016
).
23.
S.
Paul
,
S.
Ghosh
, and
D. S.
Ray
,
J. Stat. Mech.: Theory Exp.
2018
,
033205
.
24.
S.
Sen
,
P.
Ghosh
,
S. S.
Riaz
, and
D. S.
Ray
,
Phys. Rev. E
80
,
046212
(
2009
).
25.
S.
Sen
,
P.
Ghosh
, and
D. S.
Ray
,
Phys. Rev. E
81
,
056207
(
2010
).
26.
P.
Ghosh
,
Phys. Rev. E
84
,
016222
(
2011
).
27.
P.
Ghosh
,
Phys. Rev. E
100
,
042217
(
2019
).
28.
A. B.
Rovinsky
and
M.
Menzinger
,
Phys. Rev. Lett.
69
,
1193
(
1992
).
29.
A. B.
Rovinsky
and
M.
Menzinger
,
Phys. Rev. Lett.
70
,
778
(
1993
).
30.
B.
Schmidt
,
P.
De Kepper
, and
S. C.
Müller
,
Phys. Rev. Lett.
90
,
118302
(
2003
).
31.
S. S.
Riaz
,
S.
Kar
, and
D. S.
Ray
,
J. Chem. Phys.
121
,
5395
(
2004
).
32.
S. S.
Riaz
,
S.
Banarjee
,
S.
Kar
, and
D. S.
Ray
,
Eur. Phys. J. B
53
,
509
(
2006
).
33.
J.
Carballido-Landeira
,
P.
Taboada
, and
A. P.
Muñuzuri
,
Soft Matter
8
,
2945
(
2012
).
34.
A.
Giri
and
S.
Kar
,
J. Chem. Phys.
150
,
094904
(
2019
).
35.
H.
Sevčíková
,
M.
Marek
, and
S. C.
Müller
,
Science
257
,
951
(
1992
).
36.
S.
Ghosh
,
S.
Paul
, and
D. S.
Ray
,
Phys. Rev. E
94
,
042223
(
2016
).

Supplementary Material

You do not currently have access to this content.