In operando studies of high explosives involve dynamic extreme conditions produced as a shock wave travels through the explosive to produce a detonation. Here, we describe a method to safely produce detonations and dynamic extreme conditions in high explosives and in inert solids and liquids on a tabletop in a high-throughput format. This method uses a shock compression microscope, a microscope with a pulsed laser that can launch a hypervelocity flyer plate along with a velocimeter, an optical pyrometer, and a nanosecond camera that together can measure pressures, densities, and temperatures with high time and space resolution (2 ns and 2 µm). We discuss how a detonation builds up in liquid nitromethane and show that we can produce and study detonations in sample volumes close to the theoretical minimum. We then discuss how a detonation builds up from a shock in a plastic-bonded explosive (PBX) based on HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazocane), where the initial steps are hotspot formation and deflagration growth in the shocked microstructure. A method is demonstrated where we can measure thermal emission from high-temperature reactions in every HMX crystal in the PBX, with the intent of determining which configurations produce the critical hot spots that grow and ignite the entire PBX.

1.
W.
Fickett
and
W. C.
Davis
,
Detonation
(
University of California Press
,
Berkeley, CA
,
1979
).
2.
S. J.
Jacobs
,
T. P.
Liddiard
, and
B. E.
Drimmer
, “
The shock-to-detonation transition in solid explosives
,”
Symp. (Int.) Combust.
9
,
517
(
1963
).
3.
C. M.
Tarver
,
J. W.
Forbes
,
F.
Garcia
, and
P. A.
Urtiew
, “
Manganin gauge and reactive flow modeling study of the shock initiation of PBX 9501
,”
AIP Conf. Proc.
620
,
1043
(
2002
).
4.
J. W.
Forbes
,
Shock Wave Compression of Condensed Matter. A Primer
(
Springer
,
New York
,
2012
).
5.
S. A.
Sheffield
,
D. D.
Bloomquist
, and
C. M.
Tarver
, “
Subnanosecond measurements of detonation fronts in solid high explosives
,”
J. Chem. Phys.
80
,
3831
(
1984
).
6.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
Berkeley, CA
,
1980
).
7.
A. D.
Curtis
,
A. A.
Banishev
,
W. L.
Shaw
, and
D. D.
Dlott
, “
Laser-driven flyer plates for shock compression science: Launch and target impact probed by photon Doppler velocimetry
,”
Rev. Sci. Instrum.
85
,
043908
(
2014
).
8.
D.
Scott Stewart
,
Miniaturization of Explosive Technology and Microdetonics
(
Springer Netherlands
,
Dordrecht
,
2005
), p.
379
.
9.
M.
Bhowmick
,
E. J.
Nissen
, and
D. D.
Dlott
, “
Detonation on a tabletop: Nitromethane with high time and space resolution
,”
J. Appl. Phys.
124
,
075901
(
2018
).
10.
B. M.
Dobratz
, “
The insensitive high explosive triaminotrinitrobenzene (TATB): Development and characterization, 1888 to 1994
,”
Los Alamos National Lab ReportLA-13014-H; ON: DE95016705
, (
1995
).
11.
K. E.
Brown
,
W. L.
Shaw
,
X.
Zheng
, and
D. D.
Dlott
, “
Simplified laser-driven flyer plates for shock compression science
,”
Rev. Sci. Instrum.
83
,
103901
(
2012
).
12.
A. A.
Banishev
,
W. L.
Shaw
,
W. P.
Bassett
, and
D. D.
Dlott
, “
High-speed laser-launched flyer impacts studied with ultrafast photography and velocimetry
,”
J. Dyn. Behav. Mater.
2
,
194
(
2016
).
13.
W. P.
Bassett
,
B. P.
Johnson
,
L.
Salvati
,
E. J.
Nissen
,
M.
Bhowmick
, and
D. D.
Dlott
, “
Shock initiation microscopy with high time and space resolution
,”
Propell. Explos. Pyrotech.
45
,
223
(
2020
).
14.
D. D.
Dlott
, “
Shock compression dynamics under a microscope
,”
AIP Conf. Proc.
1793
,
020001
(
2017
).
15.
X.
Zhou
,
Y.
Miao
,
K. S.
Suslick
, and
D. D.
Dlott
, “
Mechanochemistry of metal–organic frameworks under pressure and shock
,”
Acc. Chem. Res.
53
,
2806
(
2020
).
16.
F.
Li
and
D. D.
Dlott
, “
High throughput tabletop shock techniques and measurements
,”
J. Appl. Phys.
131
,
075901
(
2022
).
17.
A. W.
Campbell
,
W. C.
Davis
, and
J. R.
Travis
, “
Shock initiation of detonation in liquid explosives
,”
Phys. Fluids
4
,
498
(
1961
).
18.
B. C.
Barnes
,
J. K.
Brennan
,
E. F. C.
Byrd
,
S.
Izvekov
,
J. P.
Larentzos
, and
B. M.
Rice
, in
Computational Approaches for Chemistry Under Extreme Conditions
, edited by
N.
Goldman
(
Springer International Publishing
,
Cham
,
2019
), p.
229
.
19.
B. M.
Dobratz
,
LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Simulants
(
Lawrence Livermore National Laboratory, University of California; Available from National Technical Information Service
,
Livermore, CA; Springfield, VA
,
1985
).
20.
C. M.
Tarver
, “
Detonation reaction zones in condensed explosives
,”
AIP Conf. Proc.
845
,
1026
(
2006
).
21.
P. W.
Cooper
and
S. R.
Kurowski
,
Introduction to the Technology of Explosives
(
Wiley VCH
,
New York
,
1996
).
22.
J. E.
Field
, “
Hot spot ignition mechanisms for explosives
,”
Acc. Chem. Res.
25
,
489
(
1992
).
23.
C. M.
Tarver
,
S. K.
Chidester
, and
A. L.
Nichols
 III
, “
Critical conditions for impact- and shock-induced hot spots in solid explosives
,”
J. Phys. Chem.
100
,
5794
(
1996
).
24.
J.
Cagnoux
,
P.
Chartagnac
,
P.
Hereil
,
M.
Perez
, and
L.
Seaman
, “
Lagrangian analysis. Modern tool of the dynamics of solids
,”
Ann. Phys. Fr.
12
,
451
(
1987
).
25.
D. D.
Dlott
, “
New developments in the physical chemistry of shock compression
,”
Annu. Rev. Phys. Chem.
62
,
575
(
2011
).
26.
A. C.
Mitchell
and
W. J.
Nellis
, “
Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range
,”
J. Chem. Phys.
76
,
6273
(
1982
).
27.
J. M.
Walsh
and
M. H.
Rice
, “
Dynamic compression of liquids from measurements of strong shock waves
,”
J. Chem. Phys.
26
,
815
(
1957
).
28.
G. A.
Lyzenga
,
T. J.
Ahrens
,
W. J.
Nellis
, and
A. C.
Mitchell
, “
The temperature of shock‐compressed water
,”
J. Chem. Phys.
76
,
6282
(
1982
).
29.
W. B.
Holzapfel
, “
Effect of pressure and temperature on the conductivity and ionic dissociation of water up to 100 kbar and 1000 °C
,”
J. Chem. Phys.
50
,
4424
(
1969
).
30.
S.
Ridah
, “
Shock waves in water
,”
J. Appl. Phys.
64
,
152
(
1988
).
31.
A. E.
Gleason
,
C. A.
Bolme
,
E.
Galtier
,
H. J.
Lee
,
E.
Granados
,
D. H.
Dolan
,
C. T.
Seagle
,
T.
Ao
,
S.
Ali
,
A.
Lazicki
,
D.
Swift
,
P.
Celliers
, and
W. L.
Mao
, “
Compression freezing kinetics of water to ice VII
,”
Phys. Rev. Lett.
119
,
025701
(
2017
).
32.
E. J.
Nissen
and
D. H.
Dolan
, “
Temperature and rate effects in ramp-wave compression freezing of liquid water
,”
J. Appl. Phys.
126
,
015903
(
2019
).
33.
F. H.
Ree
,
Equation of State of Water
(
Department of Energy Office of Science and Technical Information, Oak Ridge TN
,
1976
).
34.
R.
Chau
,
A. C.
Mitchell
,
R. W.
Minich
, and
W. J.
Nellis
, “
Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar)
,”
J. Chem. Phys.
114
,
1361
(
2001
).
35.
E.
Schwegler
,
G.
Galli
,
F.
Gygi
, and
R. Q.
Hood
, “
Dissociation of water under pressure
,”
Phys. Rev. Lett.
87
,
265501
(
2001
).
36.
C.
Cavazzoni
,
G. L.
Chiarotti
,
S.
Scandolo
,
E.
Tosatti
,
M.
Bernasconi
, and
M.
Parrinello
, “
Superionic and metallic states of water and ammonia at giant planet conditions
,”
Science
283
,
44
(
1999
).
37.
N.
Goldman
,
L. E.
Fried
,
I.-F. W.
Kuo
, and
C. J.
Mundy
, “
Bonding in the superionic phase of water
,”
Phys. Rev. Lett.
94
,
217801
(
2005
).
38.
C. M.
Tarver
,
J. W.
Forbes
, and
P. A.
Urtiew
, “
Nonequilibrium Zeldovich-Von Neumann-Doring theory and reactive flow modeling of detonation
,”
Russ. J. Phys. Chem. B
1
,
39
(
2007
).
39.
S.
Watson
and
J. E.
Field
, “
Integrity of thin, laser-driven flyer plates
,”
J. Appl. Phys.
88
,
3859
(
2000
).
40.
D. D.
Dlott
, “
Laser pulses into bullets: Tabletop shock experiments
,”
Phys. Chem. Chem. Phys.
24
,
10653
(
2022
).
41.
W. M.
Trott
,
R. E.
Setchell
, and
A. V.
Farnsworth
, Jr.
, “
Development of laser-driven flyer techniques for equation-of-state studies of microscale materials
,”
AIP Conf. Proc.
620
,
1347
(
2002
).
42.
O. T.
Strand
,
D. R.
Goosman
,
C.
Martinez
,
T. L.
Whitworth
, and
W. W.
Kuhlow
, “
Compact system for high-speed velocimetry using heterodyne techniques
,”
Rev. Sci. Instrum.
77
,
083108
(
2006
).
43.
J.
Weng
,
X.
Wang
,
Y.
Ma
,
H.
Tan
,
L.
Cai
,
J.
Li
, and
C.
Liu
, “
A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser
,”
Rev. Sci. Instrum.
79
,
113101
(
2008
).
44.
B. J.
Jensen
,
D. B.
Holtkamp
,
P. A.
Rigg
, and
D. H.
Dolan
, “
Accuracy limits and window corrections for photon Doppler velocimetry
,”
J. Appl. Phys.
101
,
013523
(
2007
).
45.
M.
Bhowmick
,
W. P.
Basset
,
S.
Matveev
,
L.
Salvati
 III
, and
D. D.
Dlott
, “
Optical windows as materials for high-speed shock wave detectors
,”
AIP Adv.
8
,
125123
(
2018
).
46.
W. P.
Bassett
and
D. D.
Dlott
, “
Multichannel emission spectrometer for high dynamic range optical pyrometry of shock-driven materials
,”
Rev. Sci. Instrum.
87
,
103107
(
2016
).
47.
U. L.
Gluckert
,
Optical Measurements
(
Springer
,
Berlin, Heidelberg
,
1994
).
48.
M.
Akhtar
and
D. D.
Dlott
, “
Comparing the shock sensitivity of insensitive energetic materials
,”
J. Appl. Phys.
131
,
065103
(
2022
).
49.
M. R.
Weismiller
,
J. G.
Lee
, and
R. A.
Yetter
, “
Temperature measurements of Al containing nano-thermite reactions using multi-wavelength pyrometry
,”
Proc. Combust. Inst.
33
,
1933
(
2011
).
50.
S. P.
Han
,
A. C. T.
van Duin
,
W. A.
Goddard
, and
A.
Strachan
, “
Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics
,”
J. Phys. Chem. B
115
,
6534
(
2011
).
51.
M. S.
Shaw
and
J. D.
Johnson
, “
Carbon clustering in detonations
,”
J. Appl. Phys.
62
,
2080
(
1987
).
52.
E. J.
Nissen
,
M.
Bhowmick
, and
D. D.
Dlott
, “
Shock-induced kinetics and cellular structures of liquid nitromethane detonation
,”
Combust. Flame
225
,
5
(
2021
).
53.
P.
Hébert
and
C.
Saint-Amans
, “
Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy
,”
J. Phys.: Conf. Ser.
500
,
022002
(
2014
).
54.
E. J.
Nissen
,
M.
Bhowmick
, and
D. D.
Dlott
, “
Ethylenediamine catalyzes nitromethane shock-to-detonation in two distinct ways
,”
J. Phys. Chem. B
125
,
8185
(
2021
).
55.
C. M.
Tarver
and
P. A.
Urtiew
, “
Theory and modeling of liquid explosive detonation
,”
J. Energy Mater.
28
,
299
(
2010
).
56.
A. N.
Dremin
,
O. K.
Rozanov
, and
V. S.
Trofimov
, “
On the detonation of nitromethane
,”
Combust. Flame
7
,
153
(
1963
).
57.
A. N.
Dremin
,
S. D.
Savrov
, and
A. N.
Andrievskii
, “
Investigation of shock initiation to detonation in nitromethane
,”
Combust., Explos. Shock Waves
1
,
1
6
(
1965
).
58.
A. N.
Dremin
and
P. A.
Persson
, in
Gasdynamics of Explosions and Reactive Systems
, edited by
A. K.
Oppenheim
(
Pergamon
,
Oxford
,
1980
), p.
795
.
59.
P. A.
Urtiew
,
A. S.
Kusubov
, and
R. E.
Duff
, “
Cellular structure of detonation in nitromethane
,”
Combust. Flame
14
,
117
(
1970
).
60.
P. A.
Urtiew
, “
From cellular structure to failure waves in liquid detonations
,”
Combust. Flame
25
,
241
(
1975
).
61.
F. P.
Bowden
and
A. D.
Yoffe
,
Initiation and Growth of Explosion in Liquids and Solids
(
University Press
,
Cambridge
,
1952
).
62.
W. P.
Bassett
,
B. P.
Johnson
,
L.
Salvati
 III
, and
D. D.
Dlott
, “
Hot-spot generation and growth in shocked plastic-bonded explosives studied by optical pyrometry
,”
J. Appl. Phys.
125
,
215904
(
2019
).
63.
W.
Zhang
,
W. P.
Basset
,
M.
Akhtar
,
L.
Salvati
 III
, and
D. D.
Dlott
, “
Shock compression dynamics of PETN/TATB explosive charges
,”
AIP Conf. Proc.
2272
,
030036
(
2020
).
64.
W.
Zhang
,
L.
Salvati
 III
,
M.
Akhtar
, and
D. D.
Dlott
, “
Shock initiation and hot spots in plastic-bonded 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)
,”
Appl. Phys. Lett.
116
,
124102
(
2020
).
65.
F. P.
Bowden
and
A. D.
Yoffe
,
Fast Reactions in Solids
(
Academic Press
,
New York
,
1958
).
66.
B. P.
Johnson
,
X.
Zhou
, and
D. D.
Dlott
, “
Shock pressure dependence of hot spots in a model plastic-bonded explosive
,”
J. Phys. Chem. A
126
,
145
(
2022
).
67.
B. P.
Johnson
,
X.
Zhou
,
H.
Ihara
, and
D. D.
Dlott
, “
Observing hot spot formation in individual explosive crystals under shock compression
,”
J. Phys. Chem. A
124
,
4646
(
2020
).
68.
W. P.
Bassett
,
B. P.
Johnson
,
N. K.
Neelakantan
,
K. S.
Suslick
, and
D. D.
Dlott
, “
Shock initiation of explosives: High temperature hot spots explained
,”
Appl. Phys. Lett.
111
,
061902
(
2017
).
69.
K. L.
McNesby
,
B. E.
Homan
,
R. A.
Benjamin
,
V. M.
Boyle
,
J. M.
Densmore
, and
M. M.
Biss
, “
Invited Article: Quantitative imaging of explosions with high-speed cameras
,”
Rev. Sci. Instrum.
87
,
051301
(
2016
).
You do not currently have access to this content.