Crystal structure prediction for a given chemical composition has long been a challenge in condensed-matter science. We have recently shown that experimental powder x-ray diffraction (XRD) data are helpful in a crystal structure search using simulated annealing, even when they are insufficient for structure determination by themselves [Tsujimoto et al., Phys. Rev. Mater. 2, 053801 (2018)]. In the method, the XRD data are assimilated into the simulation by adding a penalty function to the physical potential energy, where a crystallinity-type penalty function, defined by the difference between experimental and simulated diffraction angles was used. To improve the success rate and noise robustness, we introduce a correlation-coefficient-type penalty function adaptable to XRD data with significant experimental noise. We apply the new penalty function to SiO2 coesite and ɛ-Zn(OH)2 to determine its effectiveness in the data assimilation method.

1.
S. M.
Woodley
and
R.
Catlow
, “
Crystal structure prediction from first principles
,”
Nat. Mater.
7
,
937
(
2008
).
2.
J.
Maddox
, “
Crystals from first principles
,”
Nature
335
,
201
(
1988
).
3.
C. J.
Pickard
and
R. J.
Needs
, “
Ab initio/random structure searching
,”
J. Phys.: Condens. Matter
23
,
053201
(
2011
).
4.
J. H.
Holland
,
Adaptation in Natural and Artificial Systems: An Introductory 850 Analysis with Applications to Biology, Control, and Artificial Intelligence
(
University of Michigan Press
,
1975
).
5.
A. R.
Oganov
and
C. W.
Glass
, “
Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
,”
J. Chem. Phys.
124
,
244704
(
2006
).
6.
A. O.
Lyakhov
,
A. R.
Oganov
,
H. T.
Stokes
, and
Q.
Zhu
, “
New developments in evolutionary structure prediction algorithm USPEX
,”
Comput. Phys. Commun.
184
,
1172
(
2013
).
7.
A. R.
Oganov
,
A. O.
Lyakhov
, and
M.
Valle
, “
How evolutionary crystal structure prediction works–and why
,”
Acc. Chem. Res.
44
,
227
(
2011
).
8.
I. A.
Kruglov
,
D. V.
Semenok
,
H.
Song
,
R.
Szczesniak
,
I. A.
Wrona
,
R.
Akashi
,
M. M. D.
Esfahani
,
D.
Duan
,
T.
Cui
,
A. G.
Kvashnin
, and
A. R.
Oganov
, “
Superconductivity of LaH10 and LaH16 polyhydrides
,”
Phys. Rev. B
101
,
024508
(
2020
).
9.
D. V.
Semenok
,
I. A.
Troyan
,
A. V.
Sadakov
,
D.
Zhou
,
M.
Galasso
,
A. G.
Kvashnin
,
I. A.
Kruglov
,
A. A.
Bykov
,
K. Y.
Terent’ev
,
A. V.
Cherepahin
,
O. A.
Sobolevskiy
,
K. S.
Pervakov
,
A. Y.
Seregin
,
T.
Helm
,
T.
Forster
,
A. D.
Grockowiak
,
S. W.
Tozer
,
Y.
Nakamoto
,
K.
Shimizu
,
V. M.
Pudalov
,
I. S.
Lyubutin
, and
A. R.
Oganov
, “
Effect of magnetic impurities on superconductivity in LaH10
,”
Adv. Mater.
33
,
2204038
(
2021
).
10.
R.
Eberhart
and
J.
Kennedy
, “
A new optimizer using particle swarm theory
,” in
MHS’95 Proceedings of the Sixth International Symposium on Micro Machine and Human Science
(
IEEE
,
1995
).
11.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
,
094116
(
2010
).
12.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
,
2063
(
2012
).
13.
P.
Gao
,
Q.
Tong
,
J.
Lv
,
Y.
Wang
, and
Y.
Ma
, “
X-ray diffraction data-assisted structure searches
,”
Comput. Phys. Commun.
213
,
40
(
2016
).
14.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science
220
,
671
(
1983
).
15.
D. J.
Wales
and
J. P. K.
Doye
, “
Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms
,”
J. Phys. Chem. A
101
,
5111
(
1997
).
16.
S.
Goedecker
, “
Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems
,”
J. Chem. Phys.
120
,
9911
(
2004
).
17.
T.
Wang
,
M.
Hirayama
,
T.
Nomoto
,
T.
Koretsune
,
R.
Arita
, and
J. A.
Flores-Livas
, “
Absence of conventional room-temperature superconductivity at high pressure in carbon-doped H3S
,”
Phys. Rev. B
104
,
064510
(
2021
).
18.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
19.
Y.
Li
,
J.
Hao
,
H.
Liu
,
Y.
Li
, and
Y.
Ma
, “
The metallization and superconductivity of dense hydrogen sulfide
,”
J. Chem. Phys.
140
,
174712
(
2014
).
20.
D.
Duan
,
Y.
Liu
,
F.
Tian
,
D.
Li
,
X.
Huang
,
Z.
Zhao
,
H.
Yu
,
B.
Liu
,
W.
Tian
, and
T.
Cui
, “
Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity
,”
Sci. Rep.
4
,
6968
(
2014
).
21.
Y.-L.
Hai
,
N.
Lu
,
H.-L.
Tian
,
M.-J.
Jiang
,
W.
Yang
,
W.-J.
Li
,
X.-W.
Yan
,
C.
Zhang
,
X.-J.
Chen
, and
G.-H.
Zhong
, “
Cage structure and near room-temperature superconductivity in TbHn (n = 1–12)
,”
J. Phys. Chem. C
125
,
3640
(
2021
).
22.
W.
Zhang
,
A. R.
Oganov
,
A. F.
Goncharov
,
Q.
Zhu
,
S. E.
Boulfelfel
,
A. O.
Lyakhov
,
E.
Stavrou
,
M.
Somayazulu
,
V. B.
Prakapenka
, and
Z.
Konôpková
, “
Unexpected stable stoichiometries of sodium chlorides
,”
Science
342
,
1502
(
2013
).
23.
M.-s.
Miao
, “
Caesium in high oxidation states and as a p-block element
,”
Nat. Chem.
5
,
846
(
2013
).
24.
Q.
Li
,
D.
Zhou
,
W.
Zheng
,
Y.
Ma
, and
C.
Chen
, “
Global structural optimization of tungsten borides
,”
Phys. Rev. Lett.
110
,
136403
(
2013
).
25.
N.
Tsujimoto
,
D.
Adachi
,
R.
Akashi
,
S.
Todo
, and
S.
Tsuneyuki
, “
Crystal structure prediction supported by incomplete experimental data
,”
Phys. Rev. Mater.
2
,
053801
(
2018
).
26.
B.
Meredig
and
C.
Wolverton
, “
A hybrid computational-experimental approach for automated crystal structure solution
,”
Nat. Mater.
12
,
123
(
2013
).
27.
S. M.
Santos
,
J.
Rocha
, and
L.
Mafra
, “
NMR crystallography: Toward chemical shift-driven crystal structure determination of the beta-lactam antibiotic amoxicillin trihydrate
,”
Cryst. Growth Des.
13
,
2390
(
2013
).
28.
H.
Putz
,
J. C.
Schön
, and
M.
Jansen
, “
Combined method for ab initio structure solution from powder diffraction data
,”
J. Appl. Crystallogr.
32
,
864
(
1999
).
29.
D.
Adachi
,
N.
Tsujimoto
,
R.
Akashi
,
S.
Todo
, and
S.
Tsuneyuki
, “
Search for common minima in joint optimization of multiple cost functions
,”
Comput. Phys. Commun.
241
,
92
(
2019
).
30.
A.
Esmaeili
,
T.
Kamiyama
, and
R.
Oishi-Tomiyasu
, “
New functions and graphical user interface attached to powder indexing software CONOGRAPH
,”
J. Appl. Crystallogr.
50
,
651
(
2017
).
31.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
32.
S.
Tsuneyuki
,
M.
Tsukada
,
H.
Aoki
, and
Y.
Matsui
, “
First-principles interatomic potential of silica applied to molecular dynamics
,”
Phys. Rev. Lett.
61
,
869
(
1988
).
33.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
34.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
35.
A.
Togo
and
I.
Tanaka
, “Spglib
: A software library for crystal symmetry search
,” arXiv:1808.01590 (
2018
).
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
37.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
38.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
39.

According to the definition of the correlation coefficient, DCC can take values from 0 to 2. However, the correlation coefficient only becomes negative if calculated XRD pattern is inversely proportional to the experimental one. Intensity of XRD pattern never shows a negative value. In addition, the averaged intensity, Ī is negligible compared to that of the peaks in a discrete XRD pattern. Therefore, DCC hardly becomes larger than 1 in practice.

40.

The potential energy for the obtained ɛ-Zn(OH)2 structures (≈–190.3 eV) is slightly larger than that of reference ɛ-Zn(OH)2 (–190.4 eV). This suggests that the hydrogen bond orientation in the obtained structure does not perfectly agree with that of the reference. However, this energy difference is considered to be within the range of error, because this energy difference (2.5 meV/atom = 0.1 eV for 40 atoms) is much smaller than thermal energy at 300 K (=25 meV/atom = 1 eV for 40 atoms). In addition, in terms of XRD pattern, we can hardly distinguish the obtained structure from the reference one, since DCC is about 10−5. Therefore, here, we regard the obtained structure with total energy at around –190.3 eV as ɛ-Zn(OH)2.

You do not currently have access to this content.