In this work, we study the magnetic phases of a spatially modulated chain of spin-1 Rydberg excitons. Using the Density Matrix Renormalization Group (DMRG) technique, we study various magnetic and topologically nontrivial phases using both single-particle properties, such as local magnetization and quantum entropy, and many-body ones, such as pair-wise Néel and long-range string correlations. In particular, we investigate the emergence and robustness of the Haldane phase, a topological phase of anti-ferromagnetic spin-1 chains. Furthermore, we devise a hybrid quantum algorithm employing restricted Boltzmann machine to simulate the ground state of such a system that shows very good agreement with the results of exact diagonalization and DMRG.

1.
J. B.
Parkinson
and
D. J. J.
Farnell
,
An Introduction to Quantum Spin Systems
(
Springer
,
Berlin, Heidelberg
,
2010
).
2.
F. D. M.
Haldane
, “
Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state
,”
Phys. Rev. Lett.
50
,
1153
1156
(
1983
).
3.
F.
Haldane
, “
Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model
,”
Phys. Lett. A
93
,
464
468
(
1983
).
4.
M.
Hagiwara
,
K.
Katsumata
,
I.
Affleck
,
B. I.
Halperin
, and
J. P.
Renard
, “
Observation of S = 1/2 degrees of freedom in an S = 1 linear-chain Heisenberg antiferromagnet
,”
Phys. Rev. Lett.
65
,
3181
3184
(
1990
).
5.
S. H.
Glarum
,
S.
Geschwind
,
K. M.
Lee
,
M. L.
Kaplan
, and
J.
Michel
, “
Observation of fractional spin S = 1/2 on open ends of S = 1 linear antiferromagnetic chains: Nonmagnetic doping
,”
Phys. Rev. Lett.
67
,
1614
1617
(
1991
).
6.
M.
den Nijs
and
K.
Rommelse
, “
Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains
,”
Phys. Rev. B
40
,
4709
4734
(
1989
).
7.
T.
Kennedy
and
H.
Tasaki
, “
Hidden Z2 × Z2 symmetry breaking in Haldane-gap antiferromagnets
,”
Phys. Rev. B
45
,
304
307
(
1992
).
8.
M.
Lewenstein
,
A.
Sanpera
,
V.
Ahufinger
,
B.
Damski
,
A.
Sen(De)
, and
U.
Sen
, “
Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond
,”
Adv. Phys.
56
,
243
379
(
2007
).
9.
I. M.
Georgescu
,
S.
Ashhab
, and
F.
Nori
, “
Quantum simulation
,”
Rev. Mod. Phys.
86
,
153
185
(
2014
).
10.
J.
Struck
,
C.
Ölschläger
,
R. L.
Targat
,
P.
Soltan-Panahi
,
A.
Eckardt
,
M.
Lewenstein
,
P.
Windpassinger
, and
K.
Sengstock
, “
Quantum simulation of frustrated classical magnetism in triangular optical lattices
,”
Science
333
,
996
999
(
2011
).
11.
J.
Simon
,
W. S.
Bakr
,
R.
Ma
,
M. E.
Tai
,
P. M.
Preiss
, and
M.
Greiner
, “
Quantum simulation of antiferromagnetic spin chains in an optical lattice
,”
Nature
427
,
307
312
(
2011
).
12.
D.
Greif
,
T.
Uehlinger
,
G.
Jotzu
,
L.
Tarruell
, and
T.
Esslinger
, “
Short-range quantum magnetism of ultracold fermions in an optical lattice
,”
Science
340
,
1307
1310
(
2013
).
13.
R. C.
Brown
,
R.
Wyllie
,
S. B.
Koller
,
E. A.
Goldschmidt
,
M.
Foss-Feig
, and
J. V.
Porto
, “
Far-from-equilibrium spin transport in Heisenberg quantum magnets
,”
Science
348
,
540
544
(
2015
).
14.
S.
Hild
,
T.
Fukuhara
,
P.
Schauß
,
J.
Zeiher
,
M.
Knap
,
E.
Demler
,
I.
Bloch
, and
C.
Gross
, “
Far-from-equilibrium spin transport in Heisenberg quantum magnets
,”
Phys. Rev. Lett.
113
,
147205
(
2014
).
15.
L.
Duca
,
M. R. T.
Li
,
I.
Bloch
,
M.
Schleier-Smith
, and
U.
Schneider
, “
An Aharonov-Bohm interferometer for determining Bloch band topology
,”
Science
247
,
288
292
(
2015
).
16.
G.
Jotzu
,
M.
Messer
,
R.
Desbuquois
,
M.
Lebrat
,
T.
Uehlinger
,
D.
Greif
, and
T.
Esslinger
, “
Experimental realization of the topological Haldane model with ultracold fermions
,”
Nature
515
,
237
240
(
2014
).
17.
J.
Xu
,
Q.
Gu
, and
E. J.
Mueller
, “
Realizing the Haldane phase with bosons in optical lattices
,”
Phys. Rev. Lett.
120
,
085301
(
2018
).
18.
P.
Sompet
,
S.
Hirthe
,
D.
Bourgund
,
T.
Chalopin
,
J.
Bibo
,
J.
Koepsell
,
P.
Bojović
,
R.
Verresen
,
F.
Pollmann
,
G.
Salomon
,
C.
Gross
,
T. A.
Hilker
, and
I.
Bloch
, “
Realizing the symmetry-protected Haldane phase in Fermi–Hubbard ladders
,”
Nature
606
,
484
488
(
2022
).
19.
T.
Gallagher
,
Rydberg Atoms
(
Cambridge University Press
,
Cambridge, England
,
2005
).
20.
H.
Weimer
,
M.
Müller
,
I.
Lesanovsky
,
P.
Zoller
, and
H. P.
Büchler
, “
A Rydberg quantum simulator
,”
Nat. Phys.
6
,
382
388
(
2010
).
21.
H.
Labuhn
,
D.
Barredo
,
S.
Ravets
,
S.
de Léséleuc
,
T.
Macrì
,
T.
Lahaye
, and
A.
Browaeys
, “
Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models
,”
Nature
534
,
667
670
(
2016
).
22.
P.
Scholl
,
M.
Schuler
,
H. J.
Williams
,
A. A.
Eberharter
,
D.
Barredo
,
K.-N.
Schymik
,
V.
Lienhard
,
L.-P.
Henry
,
T. C.
Lang
,
T.
Lahaye
,
A. M.
Läuchli
, and
A.
Browaeys
, “
Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms
,”
Nature
595
,
233
238
(
2021
).
23.
S.
Ebadi
,
T. T.
Wang
,
H.
Levine
,
A.
Keesling
,
G.
Semeghini
,
A.
Omran
,
D.
Bluvstein
,
R.
Samajdar
,
H.
Pichler
,
W. W.
Ho
,
S.
Choi
,
S.
Sachdev
,
M.
Greiner
,
V.
Vuletić
, and
M. D.
Lukin
, “
Quantum phases of matter on a 256-atom programmable quantum simulator
,”
Nature
595
,
227
232
(
2021
).
24.
T.
Kazimierczuk
,
D.
Fröhlich
,
S.
Scheel
,
H.
Stolz
, and
M.
Bayer
, “
Giant Rydberg excitons in the copper oxide Cu2O
,”
Nature
514
,
343
347
(
2014
).
25.
M.
Assmann
and
M.
Bayer
, “
Semiconductor Rydberg physics
,”
Adv. Quantum Technol.
3
,
1900134
(
2020
).
26.
L. M.
Sager
,
S. E.
Smart
, and
D. A.
Mazziotti
, “
Preparation of an exciton condensate of photons on a 53-qubit quantum computer
,”
Phys. Rev. Res.
2
,
043205
(
2020
).
27.
A.
Klümper
,
A.
Schadschneider
, and
J.
Zittartz
, “
Matrix product ground states for one-dimensional spin-1 quantum antiferromagnets
,”
Europhys. Lett.
24
,
293
(
1993
).
28.
S.-T.
Dai
,
Q.
Jiang
, and
Z.-Y.
Li
, “
Spin-1 and mixed-spin Ising model in a transverse field
,”
Phys. Rev. B
42
,
2597
2599
(
1990
).
29.
J.
Oitmaa
and
A. M. A.
von Brasch
, “
Spin-1 Ising model in a transverse crystal field
,”
Phys. Rev. B
67
,
172402
(
2003
).
30.
G.
Gómez-Santos
, “
Variational approach to the XXZ spin-1 linear chain: Elementary excitations and Haldane conjecture
,”
Phys. Rev. Lett.
63
,
790
793
(
1989
).
31.
G.-H.
Liu
,
W.
Li
,
W.-L.
You
,
G.
Su
, and
G.-S.
Tian
, “
Magnetization process and quantum entanglement in spin-1 XXZ model with single-ion anisotropy under external field
,”
J. Magn. Magn. Mater.
361
,
99
106
(
2014
).
32.
E.
Albayrak
, “
Antiferromagnetic spin-1 XYZ model with the Dzyaloshinskii–Moriya interaction
,”
Eur. Phys. J. Plus
137
,
618
(
2022
).
33.
E.
Albayrak
, “
Thermal entanglement in the XYZ model for a two-qutrit system
,”
Opt. Commun.
284
,
1631
1636
(
2011
).
34.
I.
Affleck
,
T.
Kennedy
,
E. H.
Lieb
, and
H.
Tasaki
, “
Rigorous results on valence-bond ground states in antiferromagnets
,”
Phys. Rev. Lett.
59
,
799
802
(
1987
).
35.
J.
Sólyom
, “
Competing bilinear and biquadratic exchange couplings in spin-1 Heisenberg chains
,”
Phys. Rev. B
36
,
8642
8648
(
1987
).
36.
A.
Klümper
,
A.
Schadschneider
, and
J.
Zittartz
, “
Groundstate properties of a generalized VBS-model
,”
Z. Phys. B: Condens. Matter
87
,
281
287
(
1992
).
37.
M. T.
Batchelor
,
L.
Mezincescu
,
R. I.
Nepomechie
, and
V.
Rittenberg
, “
q-deformations of the O(3) symmetric spin-1 Heisenberg chain
,”
J. Phys. A: Math. Gen.
23
,
L141
(
1990
).
38.
M.
Fannes
,
B.
Nachtergaele
, and
R. F.
Werner
, “
Finitely correlated states on quantum spin chains
,”
Commun. Math. Phys.
144
,
443
490
(
1992
).
39.
S.
Warren
,
L. M.
Sager-Smith
, and
D. A.
Mazziotti
, “
Quantum phase transitions in a model Hamiltonian exhibiting entangled simultaneous fermion-pair and exciton condensations
,”
Phys. Rev. B
106
,
165107
(
2022
).
40.
A. N.
Poddubny
and
M. M.
Glazov
, “
Topological spin phases of trapped Rydberg excitons in Cu2O
,”
Phys. Rev. Lett.
123
,
126801
(
2019
).
41.
A. N.
Poddubny
and
M. M.
Glazov
, “
Polarized edge state emission from topological spin phases of trapped Rydberg excitons in Cu2O
,”
Phys. Rev. B
102
,
125307
(
2020
).
42.
M.
Creutz
, “
End states, ladder compounds, and domain-wall fermions
,”
Phys. Rev. Lett.
83
,
2636
2639
(
1999
).
43.
H.
Alaeian
,
C. W. S.
Chang
,
M. V.
Moghaddam
,
C. M.
Wilson
,
E.
Solano
, and
E.
Rico
, “
Creating lattice gauge potentials in circuit QED: The bosonic Creutz ladder
,”
Phys. Rev. A
99
,
053834
(
2019
).
44.
J. S. C.
Hung
,
J. H.
Busnaina
,
C. W. S.
Chang
,
A. M.
Vadiraj
,
I.
Nsanzineza
,
E.
Solano
,
H.
Alaeian
,
E.
Rico
, and
C. M.
Wilson
, “
Quantum simulation of the bosonic Creutz ladder with a parametric cavity
,”
Phys. Rev. Lett.
127
,
100503
(
2021
).
45.
S. O.
Krüger
and
S.
Scheel
, “
Waveguides for Rydberg excitons in Cu2O from strain traps
,”
Phys. Rev. B
97
,
205208
(
2018
).
46.
D. P.
Trauernicht
,
J. P.
Wolfe
, and
A.
Mysyrowicz
, “
Thermodynamics of strain-confined paraexcitons in Cu2O
,”
Phys. Rev. B
34
,
2561
2575
(
1986
).
47.
M.
Yuan
,
K.
Biermann
, and
P. V.
Santos
, “
Manipulation of flying and single excitons by GHz surface acoustic waves
,”
AVS Quantum Sci.
4
,
035901
(
2022
).
48.
K. P.
Kalinin
,
A.
Amo
,
J.
Bloch
, and
N. G.
Berloff
, “
Polaritonic XY-Ising machine
,”
Nanophotonics
9
,
4127
4138
(
2020
).
49.
R.
Tao
,
K.
Peng
,
L.
Haeberlé
,
Q.
Li
,
D.
Jin
,
G. R.
Fleming
,
S.
Kéna-Cohen
,
X.
Zhang
, and
W.
Bao
, “
Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature
,”
Nat. Mater.
21
,
761
766
(
2022
).
50.
M.
Alloing
,
A.
Lemaître
,
E.
Galopin
, and
F.
Dubin
, “
Optically programmable excitonic traps
,”
Nat. Mater.
3
,
1578
(
2013
).
51.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
, “
Solitons in polyacetylene
,”
Phys. Rev. Lett.
42
,
1698
1701
(
1979
).
52.
M. L.
Néel
, “
Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme
,”
Ann. Phys.
12
,
137
198
(
1948
).
53.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
2866
(
1992
).
54.
M.
Block
,
J.
Motruk
,
S.
Gazit
,
M. P.
Zaletel
,
Z.
Landau
,
U.
Vazirani
, and
N. Y.
Yao
, “
Performance of the rigorous renormalization group for first-order phase transitions and topological phases
,”
Phys. Rev. B
103
,
195122
(
2021
).
55.
J.
Rotureau
,
N.
Michel
,
W.
Nazarewicz
,
M.
Płoszajczak
, and
J.
Dukelsky
, “
Density matrix renormalization group approach for many-body open quantum systems
,”
Phys. Rev. Lett.
97
,
110603
(
2006
).
56.
E. M.
Stoudenmire
and
S. R.
White
, “
Studying two-dimensional systems with the density matrix renormalization group
,”
Annu. Rev. Condens. Matter Phys.
3
,
111
128
(
2012
).
57.
S. P.
Lim
and
D. N.
Sheng
, “
Many-body localization and transition by density matrix renormalization group and exact diagonalization studies
,”
Phys. Rev. B
94
,
045111
(
2016
).
58.
G. K.-L.
Chan
and
S.
Sharma
, “
The density matrix renormalization group in quantum chemistry
,”
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
59.
L.
Freitag
and
M.
Reiher
,
Quantum Chemistry and Dynamics of Excited States
(
John Wiley and Sons, Ltd.
,
2020
), Chap. 7, pp.
205
245
.
60.
A.
Baiardi
and
M.
Reiher
, “
The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges
,”
J. Chem. Phys.
152
,
040903
(
2020
).
61.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
,
96
192
(
2011
).
62.
M.
Fishman
,
S. R.
White
, and
E. M.
Stoudenmire
, “
The ITensor software library for tensor network calculations
,”
SciPost Phys. Codebases
2022
,
4
(
2020
).
63.
J.
Lado
(
2021
). “
Dmrgpy
,” Github. https://github.com/joselado/dmrgpy.
64.
W.
Chen
,
K.
Hida
, and
B. C.
Sanctuary
, “
Ground-state phase diagram of S = 1 XXZ chains with uniaxial single-ion-type anisotropy
,”
Phys. Rev. B
67
,
104401
(
2003
).
65.
K.
Hida
and
W.
Chen
, “
Emergence of long period antiferromagnetic orders from Haldane phase in S = 1 Heisenberg chains with D-modulation
,”
J. Phys. Soc. Jpn.
74
,
2090
2093
(
2005
).
66.
Y.-C.
Tzeng
,
H.
Onishi
,
T.
Okubo
, and
Y.-J.
Kao
, “
Quantum phase transitions driven by rhombic-type single-ion anisotropy in the S = 1 Haldane chain
,”
Phys. Rev. B
96
,
060404
(
2017
).
67.
S. A.
Zvyagin
,
J.
Wosnitza
,
C. D.
Batista
,
M.
Tsukamoto
,
N.
Kawashima
,
J.
Krzystek
,
V. S.
Zapf
,
M.
Jaime
,
N. F.
Oliveira
, and
A.
Paduan-Filho
, “
Magnetic excitations in the spin-1 anisotropic Heisenberg antiferromagnetic chain system nicl24SC(nh2)2
,”
Phys. Rev. Lett.
98
,
047205
(
2007
).
68.
J.
Biamonte
,
P.
Wittek
,
N.
Pancotti
,
P.
Rebentrost
,
N.
Wiebe
, and
S.
Lloyd
, “
Quantum machine learning
,”
Nature
549
,
195
202
(
2017
).
69.
P.
Mehta
,
M.
Bukov
,
C.-H.
Wang
,
A. G. R.
Day
,
C.
Richardson
,
C. K.
Fisher
, and
D. J.
Schwab
, “
A high-bias, low-variance introduction to machine learning for physicists
,”
Phys. Rep.
810
,
1
124
(
2019
).
70.
M.
Sajjan
,
J.
Li
,
R.
Selvarajan
,
S. H.
Sureshbabu
,
S. S.
Kale
,
R.
Gupta
,
V.
Singh
, and
S.
Kais
, “
Quantum machine learning for chemistry and physics
,”
Chem. Soc. Rev.
51
,
6475
(
2022
).
71.
D.
Dhall
,
R.
Kaur
, and
M.
Juneja
, “
Machine learning: A review of the algorithms and its applications
,” in
Proceedings of ICRIC 2019
, edited by
P. K.
Singh
,
A. K.
Kar
,
Y.
Singh
,
M. H.
Kolekar
, and
S.
Tanwar
(
Springer International Publishing
,
Cham
,
2020
), pp.
47
63
.
72.
I.
MacCormack
,
C.
Delaney
,
A.
Galda
,
N.
Aggarwal
, and
P.
Narang
, “
Branching quantum convolutional neural networks
,”
Phys. Rev. Res.
4
,
013117
(
2022
).
73.
R. G.
Melko
,
G.
Carleo
,
J.
Carrasquilla
, and
J. I.
Cirac
, “
Restricted Boltzmann machines in quantum physics
,”
Nat. Phys.
15
,
887
892
(
2019
).
74.
M.
Sajjan
,
V.
Singh
,
R.
Selvarajan
, and
S.
Kais
, “
Imaginary components of out-of-time correlators and information scrambling for navigating the learning landscape of a quantum machine learning model
,” arXiv:2208.13384 (
2022
).
75.
Y.
Nomura
,
A. S.
Darmawan
,
Y.
Yamaji
, and
M.
Imada
, “
Restricted Boltzmann machine learning for solving strongly correlated quantum systems
,”
Phys. Rev. B
96
,
205152
(
2017
).
76.
K.
Choo
,
A.
Mezzacapo
, and
G.
Carleo
, “
Fermionic neural-network states for ab-initio electronic structure
,”
Nat. Commun.
11
,
2368
(
2020
).
77.
K.
Ch’Ng
,
J.
Carrasquilla
,
R. G.
Melko
, and
E.
Khatami
, “
Machine learning phases of strongly correlated fermions
,”
Phys. Rev. X
7
,
031038
(
2017
); arXiv:1609.02552.
78.
T.
Vieijra
,
C.
Casert
,
J.
Nys
,
W.
De Neve
,
J.
Haegeman
,
J.
Ryckebusch
, and
F.
Verstraete
, “
Restricted Boltzmann machines for quantum states with non-abelian or anyonic symmetries
,”
Phys. Rev. Lett.
124
,
097201
(
2020
).
79.
C.
Ciliberto
,
M.
Herbster
,
A. D.
Ialongo
,
M.
Pontil
,
A.
Rocchetto
,
S.
Severini
, and
L.
Wossnig
, “
Quantum machine learning: A classical perspective
,”
Proc. R. Soc. A
474
,
20170551
(
2018
).
80.
J.
Carrasquilla
and
R. G.
Melko
, “
Machine learning phases of matter
,”
Nat. Phys.
13
,
431
434
(
2017
).
81.
C. K.
Lee
,
P.
Patil
,
S.
Zhang
, and
C. Y.
Hsieh
, “
Neural-network variational quantum algorithm for simulating many-body dynamics
,”
Phys. Rev. Res.
3
,
023095
(
2021
).
82.
M.
Sajjan
,
S. H.
Sureshbabu
, and
S.
Kais
, “
Quantum machine-learning for eigenstate filtration in two-dimensional materials
,”
J. Am. Chem. Soc.
143
,
18426
(
2021
).
83.
S. H.
Sureshbabu
,
M.
Sajjan
,
S.
Oh
, and
S.
Kais
, “
Implementation of quantum machine learning for electronic structure calculations of periodic systems on quantum computing devices
,”
J. Chem. Inf. Model.
61
,
2667
(
2021
).
84.
R.
Xia
and
S.
Kais
, “
Quantum machine learning for electronic structure calculations
,”
Nat. Commun.
9
,
4195
(
2018
).
85.
P.-J.
Yang
,
M.
Sugiyama
,
K.
Tsuda
, and
T.
Yanai
, “
Artificial neural networks applied as molecular wave function solvers
,”
J. Chem. Theory Comput.
16
,
3513
3529
(
2020
).
86.
G.
Verdon
,
M.
Broughton
, and
J.
Biamonte
, “
A quantum algorithm to train neural networks using low-depth circuits
,” arXiv:1712.05304 (
2017
).
87.
V.
Dixit
,
R.
Selvarajan
,
M. A.
Alam
,
T. S.
Humble
, and
S.
Kais
, “
Training restricted Boltzmann machines with a D-wave quantum annealer
,”
Front. Phys.
9
,
589626
(
2021
).
88.
N.
Le Roux
and
Y.
Bengio
, “
Representational power of restricted Boltzmann machines and deep belief networks
,”
Neural Comput.
20
,
1631
1649
(
2008
).
89.
D.-L.
Deng
,
X.
Li
, and
S.
Das Sarma
, “
Quantum entanglement in neural network states
,”
Phys. Rev. X
7
,
021021
(
2017
).
90.
P. M.
Long
and
R. A.
Servedio
, “
Restricted Boltzmann machines are hard to approximately evaluate or simulate
,” in
Proceedings of the 27th International Conference on Machine Learning (ICML'10), Haifa, Israel
(
Omnipress, Madison, WI
,
2010
), pp.
703
710
.
91.
G. E.
Hinton
and
R. R.
Salakhutdinov
, “
Reducing the dimensionality of data with neural networks
,”
Science
313
,
504
507
(
2006
).
92.
A.
Fischer
and
C.
Igel
, “
Training restricted Boltzmann machines: An introduction
,”
Pattern Recognit.
47
,
25
39
(
2014
).
93.
S.
Kanno
and
T.
Tada
, “
Many-body calculations for periodic materials via restricted Boltzmann machine-based VQE
,”
Quantum Sci. Technol.
6
,
025015
(
2021
).
94.
D. H.
Ackley
,
G. E.
Hinton
, and
T. J.
Sejnowski
, “
A learning algorithm for Boltzmann machines
,”
Cognit. Sci.
9
,
147
169
(
1985
).
95.
G. E.
Hinton
, “
Training products of experts by minimizing contrastive divergence
,”
Neural Comput.
14
,
1771
1800
(
2002
).
96.
A.
Argun
,
A.
Callegari
, and
G.
Volpe
, “
Ising model
,” in
Simulation of Complex Systems
(
IOP Publishing
,
2021
), pp.
2053
2563
.
97.
S. G.
Brush
, “
History of the Lenz-Ising model
,”
Rev. Mod. Phys.
39
,
883
893
(
1967
).
98.
G.
Torlai
and
R. G.
Melko
, “
Learning thermodynamics with Boltzmann machines
,”
Phys. Rev. B
94
,
165134
(
2016
).
99.
G.
Torlai
,
G.
Mazzola
,
J.
Carrasquilla
,
M.
Troyer
,
R.
Melko
, and
G.
Carleo
, “
Neural-network quantum state tomography
,”
Nat. Phys.
14
,
447
450
(
2018
).
100.
Y.
Wang
,
G.
Li
, and
X.
Wang
, “
Variational quantum Gibbs state preparation with a truncated Taylor series
,”
Phys. Rev. Appl.
16
,
054035
(
2021
).
101.
O.
Higgott
,
D.
Wang
, and
S.
Brierley
, “
Variational quantum computation of excited states
,”
Quantum
3
,
156
(
2019
).
102.
S. E.
Smart
and
D. A.
Mazziotti
, “
Quantum solver of contracted eigenvalue equations for scalable molecular simulations on quantum computing devices
,”
Phys. Rev. Lett.
126
,
070504
(
2021
).
103.
D. P.
Kingma
and
J. L.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
104.
G.
Aleksandrowicz
,
T.
Alexander
,
P.
Barkoutsos
,
L.
Bello
,
Y.
Ben-Haim
,
D.
Bucher
,
F. J.
Cabrera-Hernández
,
J.
Carballo-Franquis
,
A.
Chen
,
C. F.
Chen
 et al. (2019). “
Qiskit: An open-source framework for quantum computing
,” Zenodo.
105.
J. E.
Runeson
and
J. O.
Richardson
, “
Generalized spin mapping for quantum-classical dynamics
,”
J. Chem. Phys.
152
,
084110
(
2020
).
106.
S.
Warren
,
L. M.
Sager-Smith
, and
D. A.
Mazziotti
, “
Quantum simulation of quantum phase transitions using the convex geometry of reduced density matrices
,”
Phys. Rev. A
106
,
012434
(
2022
).

Supplementary Material

You do not currently have access to this content.