We present a new implementation for computing spin–orbit couplings (SOCs) within a time-dependent density-functional theory (TD-DFT) framework in the standard spin-conserving formulation as well in the spin–flip variant (SF-TD-DFT). This approach employs the Breit–Pauli Hamiltonian and Wigner–Eckart’s theorem applied to the reduced one-particle transition density matrices, together with the spin–orbit mean-field treatment of the two-electron contributions. We use a state-interaction procedure and compute the SOC matrix elements using zero-order non-relativistic states. Benchmark calculations using several closed-shell organic molecules, diradicals, and a single-molecule magnet illustrate the efficiency of the SOC protocol. The results for organic molecules (described by standard TD-DFT) show that SOCs are insensitive to the choice of the functional or basis sets, as long as the states of the same characters are compared. In contrast, the SF-TD-DFT results for small diradicals (CH2, NH2+, SiH2, and PH2+) show strong functional dependence. The spin-reversal energy barrier in a Fe(III) single-molecule magnet computed using non-collinear SF-TD-DFT (PBE0, ωPBEh/cc-pVDZ) agrees well with the experimental estimate.

1.
J. N.
Harvey
, “
Understanding the kinetics of spin-forbidden chemical reactions
,”
Phys. Chem. Chem. Phys.
9
,
331
(
2007
).
2.
F.
Neese
and
D. A.
Pantazis
, “
What is not required to make a single molecule magnet
,”
Faraday Discuss.
148
,
229
(
2011
).
3.
J. D.
Rinehart
and
J. R.
Long
, “
Exploiting single-ion anisotropy in the design of f-element single-molecule magnets
,”
Chem. Sci.
2
,
2078
(
2011
).
4.
A.
Bergantini
,
M. J.
Abplanalp
,
P.
Pokhilko
,
A. I.
Krylov
,
C. N.
Shingledecker
,
E.
Herbst
, and
R. I.
Kaiser
, “
A combined experimental and theoretical study on the formation of interstellar propylene oxide (CH3CHCH2O)—A chiral molecule
,”
Astrophys. J.
860
,
108
(
2018
).
5.
Q.
Ou
and
J. E.
Subotnik
, “
Electronic relaxation in benzaldehyde evaluated via TD-DFT and localized diabatization: Intersystem crossings, conical intersections, and phosphorescence
,”
J. Phys. Chem. C
117
,
9839
(
2013
).
6.
P.
Pokhilko
,
R.
Shannon
,
D.
Glowacki
,
H.
Wang
, and
A. I.
Krylov
, “
Spin-forbidden channels in reactions of unsaturated hydrocarbons with O(3P)
,”
J. Phys. Chem. A
123
,
482
(
2019
).
7.
B. F.
Habenicht
and
O. V.
Prezhdo
, “
Ab initio time-domain study of the triplet state in a semiconducting carbon nanotube: Intersystem crossing, phosphorescence time, and line width
,”
J. Am. Chem. Soc.
134
,
15648
(
2012
).
8.
L.
Favero
,
G.
Granucci
, and
M.
Persico
, “
Dynamics of acetone photodissociation: A surface hopping study
,”
Phys. Chem. Chem. Phys.
15
,
20651
(
2013
).
9.
B.
Fu
,
B. C.
Shepler
, and
J. M.
Bowman
, “
Three-state trajectory surface hopping studies of the photodissociation dynamics of formaldehyde on ab initio potential energy surfaces
,”
J. Am. Chem. Soc.
133
,
7957
(
2011
).
10.
G.
Cui
and
W.
Thiel
, “
Generalized trajectory surface-hopping method for internal conversion and intersystem crossing
,”
J. Chem. Phys.
141
,
124101
(
2014
).
11.
J.
Liu
,
Z.
Lan
, and
J.
Yang
, “
An efficient implementation of spin–orbit coupling within the framework of semiempirical orthogonalization-corrected methods for ultrafast intersystem crossing dynamics
,”
Phys. Chem. Chem. Phys.
23
,
22313
(
2021
).
12.
P. K.
Samanta
,
D.
Kim
,
V.
Coropceanu
, and
J.-L.
Brédas
, “
Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: Impact of the nature of singlet vs triplet excited states
,”
J. Am. Chem. Soc.
139
,
4042
(
2017
).
13.
Z.
Tu
,
F.
Wang
, and
X.
Li
, “
Equation-of-motion coupled-cluster method for ionized states with spin-orbit coupling
,”
J. Chem. Phys.
136
,
174102
(
2012
).
14.
Z.
Wang
,
S.
Hu
,
F.
Wang
, and
J.
Guo
, “
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling
,”
J. Chem. Phys.
142
,
144109
(
2015
).
15.
A.
Asthana
,
J.
Liu
, and
L.
Cheng
, “
Exact two-component equation-of-motion coupled-cluster singles and doubles method using atomic mean-field spin-orbit integrals
,”
J. Chem. Phys.
150
,
074102
(
2019
).
16.
J.
Liu
,
Y.
Shen
,
A.
Asthana
, and
L.
Cheng
, “
Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals
,”
J. Chem. Phys.
148
,
034106
(
2018
).
17.
J.
Liu
and
L.
Cheng
, “
An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit coupling
,”
J. Chem. Phys.
148
,
144108
(
2018
).
18.
M.
Guo
,
Z.
Wang
, and
F.
Wang
, “
Equation-of-motion coupled-cluster theory for double electron attachment with spin–orbit coupling
,”
J. Chem. Phys.
153
,
214118
(
2020
).
19.
D. G.
Fedorov
,
S.
Koseki
,
M. W.
Schmidt
, and
M. S.
Gordon
, “
Spin-orbit coupling in molecules: Chemistry beyond the adiabatic approximation
,”
Int. Rev. Phys. Chem.
22
,
551
(
2003
).
20.
C. M.
Marian
, “
Spin–orbit coupling and intersystem crossing in molecules
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
187
(
2012
).
21.
B. A.
Hess
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
, “
A mean-field spin-orbit method applicable to correlated wavefunctions
,”
Chem. Phys. Lett.
251
,
365
(
1996
).
22.
J.
Tatchen
and
C. M.
Marian
, “
On the performance of approximate spin–orbit Hamiltonians in light conjugated molecules: The fine-structure splitting of HC6H+, NC5H+, and NC4N+
,”
Chem. Phys. Lett.
313
,
351
(
1999
).
23.
D.
Danovich
,
C. M.
Marian
,
T.
Neuheuser
,
S. D.
Peyerimhoff
, and
S.
Shaik
, “
Spin-orbit coupling patterns induced by twist and pyramidalization modes in C2H4: A quantitative study and a qualitative analysis
,”
J. Phys. Chem. A
102
,
5923
(
1998
).
24.
F.
Neese
, “
Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations
,”
J. Chem. Phys.
122
,
034107
(
2005
).
25.
S. G.
Chiodo
and
N.
Russo
, “
DFT spin–orbit coupling between singlet and triplet excited states: A case of psoralen compounds
,”
Chem. Phys. Lett.
490
,
90
(
2010
).
26.
Z.
Li
,
B.
Suo
,
Y.
Zhang
,
Y.
Xiao
, and
W.
Liu
, “
Combining spin-adapted open-shell TD-DFT with spin-orbit coupling
,”
Mol. Phys.
111
,
3741
(
2013
).
27.
F.
Franco de Carvalho
,
B. F. E.
Curchod
,
T. J.
Penfold
, and
I.
Tavernelli
, “
Derivation of spin-orbit couplings in collinear linear-response TDDFT: A rigorous formulation
,”
J. Chem. Phys.
140
,
144103
(
2014
).
28.
X.
Gao
,
S.
Bai
,
D.
Fazzi
,
T.
Niehaus
,
M.
Barbatti
, and
W.
Thiel
, “
Evaluation of spin-orbit couplings with linear-response time-dependent density functional methods
,”
J. Chem. Theory Comput.
13
,
515
(
2017
).
29.
F.
Dinkelbach
,
M.
Kleinschmidt
, and
C. M.
Marian
, “
Assessment of interstate spin-orbit couplings from linear response amplitudes
,”
J. Chem. Theory Comput.
13
,
749
(
2017
).
30.
M.
Kleinschmidt
,
J.
Tatchen
, and
C. M.
Marian
, “
Spin-orbit coupling of DFT/MRCI wavefunctions: Method, test calculations, and application to thiophene
,”
J. Comput. Chem.
23
,
824
(
2002
).
31.
M.
Kleinschmidt
and
C. M.
Marian
, “
Efficient generation of matrix elements for one-electron spin–orbit operators
,”
Chem. Phys.
311
,
71
(
2005
).
32.
O.
Christiansen
,
J.
Gauss
, and
B.
Schimmelpfennig
, “
Spin-orbit coupling constants from coupled-cluster response theory
,”
Phys. Chem. Chem. Phys.
2
,
965
(
2000
).
33.
K.
Klein
and
J.
Gauss
, “
Perturbative calculation of spin-orbit splittings using the equation-of-motion ionization-potential coupled-cluster ansatz
,”
J. Chem. Phys.
129
,
194106
(
2008
).
34.
D.
Bokhan
,
A.
Perera
,
D. N.
Trubnikov
, and
R. J.
Bartlett
, “
Excitation energies with spin-orbit couplings using equation-of-motion coupled-cluster singles and doubles eigenvectors
,”
J. Chem. Phys.
147
,
164118
(
2017
).
35.
E.
Epifanovsky
,
K.
Klein
,
S.
Stopkowicz
,
J.
Gauss
, and
A. I.
Krylov
, “
Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations
,”
J. Chem. Phys.
143
,
064102
(
2015
).
36.
P.
Pokhilko
,
E.
Epifanovsky
, and
A. I.
Krylov
, “
General framework for calculating spin–orbit couplings using spinless one-particle density matrices: Theory and application to the equation-of-motion coupled-cluster wave functions
,”
J. Chem. Phys.
151
,
034106
(
2019
).
37.
L. A.
Mück
and
J.
Gauss
, “
Spin-orbit splittings in degenerate open-shell states via Mukherjee’s multireference coupled-cluster theory: A measure for the coupling contribution
,”
J. Chem. Phys.
136
,
111103
(
2012
).
38.
D. G.
Fedorov
and
M. S.
Gordon
, “
A study of the relative importance of one and two-electron contributions to spin-orbit coupling
,”
J. Chem. Phys.
112
,
5611
(
2000
).
39.
S.
Koseki
,
N.
Matsunaga
,
T.
Asada
,
M. W.
Schmidt
, and
M. S.
Gordon
, “
Spin-orbit coupling constants in atoms and ions of transition elements: Comparison of effective core potentials, model core potentials, and all-electron methods
,”
J. Phys. Chem. A
123
,
2325
(
2019
).
40.
P. Å.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
, “
The restricted active space (RAS) state interaction approach with spin-orbit coupling
,”
Chem. Phys. Lett.
357
,
230
(
2002
).
41.
A.
Carreras
,
H.
Jiang
,
P.
Pokhilko
,
A. I.
Krylov
,
P. M.
Zimmerman
, and
D.
Casanova
, “
Calculation of spin-orbit couplings using RASCI spinless one-particle density matrices: Theory and applications
,”
J. Chem. Phys.
153
,
214107
(
2020
).
42.
A.
Berning
,
M.
Schweizer
,
H.-J.
Werner
,
P. J.
Knowles
, and
P.
Palmieri
, “
Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions
,”
Mol. Phys.
98
,
1823
(
2000
).
43.
M.
Roemelt
, “
Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors
,”
J. Chem. Phys.
143
,
044112
(
2015
).
44.
E. R.
Sayfutyarova
and
G. K.-L.
Chan
, “
A state interaction spin-orbit coupling density matrix renormalization group method
,”
J. Chem. Phys.
144
,
234301
(
2016
).
45.
C.
Eckart
, “
The application of group theory to the quantum dynamics of monatomic systems
,”
Rev. Mod. Phys.
2
,
305
(
1930
).
46.
E.
Wigner
, “
Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen
,”
Z. Phys.
43
,
624
(
1927
).
47.
R. N.
Zare
,
Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics
(
John Wiley & Sons
,
1988
).
48.
M. L.
Vidal
,
P.
Pokhilko
,
A. I.
Krylov
, and
S.
Coriani
, “
Equation-of-motion coupled-cluster theory to model L-edge x-ray absorption and photoelectron spectra
,”
J. Phys. Chem. Lett.
11
,
8314
(
2020
).
49.
O. R.
Meitei
,
S. E.
Houck
, and
N. J.
Mayhall
, “
Spin–orbit matrix elements for a combined spin-flip and IP/EA approach
,”
J. Chem. Theory Comput.
16
,
3597
(
2020
).
50.
M. E.
Casida
, “
Time-dependent density-functional theory for molecules and molecular solids
,”
J. Mol. Struct.: THEOCHEM
914
,
3
(
2009
).
51.
Y.
Shao
,
M.
Head-Gordon
, and
A. I.
Krylov
, “
The spin-flip approach within time-dependent density functional theory: Theory and applications to diradicals
,”
J. Chem. Phys.
118
,
4807
(
2003
).
52.
F.
Wang
and
T.
Ziegler
, “
Time-dependent density functional theory based on a noncollinear formulation of the exchange-correlation potential
,”
J. Chem. Phys.
121
,
12191
(
2004
).
53.
Z.
Rinkevicius
,
O.
Vahtras
, and
H.
Ågren
, “
Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character
,”
J. Chem. Phys.
133
,
114104
(
2010
).
54.
Y. A.
Bernard
,
Y.
Shao
, and
A. I.
Krylov
, “
General formulation of spin-flip time-dependent density functional theory using non-collinear kernels: Theory, implementation, and benchmarks
,”
J. Chem. Phys.
136
,
204103
(
2012
).
55.
D.
Casanova
and
A. I.
Krylov
, “
Spin-flip methods in quantum chemistry
,”
Phys. Chem. Chem. Phys.
22
,
4326
(
2020
).
56.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
(
1999
).
57.
N. J.
Mayhall
and
M.
Head-Gordon
, “
Computational quantum chemistry for multiple-site Heisenberg spin couplings made simple: Still only one spin-flip required
,”
J. Phys. Chem. Lett.
6
,
1982
(
2015
).
58.
S.
Kotaru
,
S.
Kähler
,
M.
Alessio
, and
A. I.
Krylov
, “
Magnetic exchange interactions in binuclear and tetranuclear iron(III) complexes described by spin-flip DFT and Heisenberg effective Hamiltonians
,”
J. Comput. Chem.
(published online, 2022).
59.
M.
Alessio
,
S.
Kotaru
,
G.
Giudetti
, and
A. I.
Krylov
, “
Origin of magnetic anisotropy in nickelocene molecular magnet and resilience of its magnetic behavior
,”
J. Phys. Chem. C
(
2022
), submitted; https://chemrxiv.org/engage/chemrxiv/article-details/630057d40c5277d5cebb8768.
60.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
de Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
DePrince
,
R. A.
DiStasio
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
61.
A. I.
Krylov
and
P. M. W.
Gill
, “
Q-Chem: An engine for innovation
,”
WIREs: Comput. Mol. Sci.
3
,
317
(
2013
).
62.
N.
Orms
and
A. I.
Krylov
, “
Singlet-triplet energy gaps and the degree of diradical character in binuclear copper molecular magnets characterized by spin-flip density functional theory
,”
Phys. Chem. Chem. Phys.
20
,
13127
(
2018
).
63.
H. A.
Bethe
and
E. E.
Salpeter
,
Quantum Mechanics of One and Two Electron Atoms
(
Plenum
,
New York
,
1977
).
64.
Relativistic Electronic Structure Theory
, edited by
P.
Schwerdtfeger
(
Elsevier
,
Amsterdam
,
2002
).
65.
C. D.
Sherrill
,
M. L.
Leininger
,
T. J.
Van Huis
, and
H. F.
Schaefer
III
, “
Structures and vibrational frequencies in the full configuration interaction limit: Predictions for four electronic states of methylene using triple-zeta plus double polarization (TZ2P) basis
,”
J. Chem. Phys.
108
,
1040
(
1998
).
66.
J. C.
Stefens
,
Y.
Yamaguchi
,
C. D.
Sherrill
, and
H. F.
Schaefer
III
, “
The X̃3B1, ã1A1, b̃1B1, and c̃1Σg+ electronic states of NH2+
,”
J. Phys. Chem.
102
,
3999
(
1998
).
67.
Y.
Yamaguchi
,
T. J.
Van Huis
,
C. D.
Sherrill
, and
H. F.
Schaefer
III
, “
The X̃1A1, ã3B1, Ã1B1 and B̃1A1 electronic states of SiH2
,”
Theor. Chem. Acc.
97
,
341
(
1997
).
68.
T. J.
Van Huis
,
Y.
Yamaguchi
,
C. D.
Sherrill
, and
H. F.
Schaefer
III
, “
The X̃1A1, ã3B1, Ã1B1 and B̃1A1 electronic states of PH2+
,”
J. Phys. Chem.
101
,
6955
(
1997
).
69.
X.
Feng
,
S. J.
Hwang
,
J.-L.
Liu
,
Y.-C.
Chen
,
M.-L.
Tong
, and
D. G.
Nocera
, “
Slow magnetic relaxation in intermediate spin S = 3/2 mononuclear Fe(III) complexes
,”
J. Am. Chem. Soc.
139
,
16474
(
2017
).
70.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
71.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
(
1999
).
72.
M. A.
Rohrdanz
,
K. M.
Martins
, and
J. M.
Herbert
, “
A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states
,”
J. Chem. Phys.
130
,
054112
(
2009
).
73.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom-atom dispersion interactions
,”
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
74.
N.
Mardirossian
and
M.
Head-Gordon
, “
ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation
,”
J. Chem. Phys.
144
,
214110
(
2016
).
75.
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
, “
New tools for the systematic analysis and visualization of electronic excitations. I. Formalism
,”
J. Chem. Phys.
141
,
024106
(
2014
).
76.
S. A.
Mewes
,
F.
Plasser
,
A. I.
Krylov
, and
A.
Dreuw
, “
Benchmarking excited-state calculations using exciton properties
,”
J. Chem. Theory Comput.
14
,
710
(
2018
).
77.
P.
Pokhilko
and
A. I.
Krylov
, “
Quantitative El-Sayed rules for many-body wavefunctions from spinless transition density matrices
,”
J. Phys. Chem. Lett.
10
,
4857
(
2019
).
78.
M. A.
El-Sayed
, “
Spin–orbit coupling and the radiationless processes in nitrogen heterocycles
,”
J. Chem. Phys.
38
,
2834
(
1963
).
79.
M. A.
El-Sayed
, “
Triplet state: Its radiative and non-radiative properties
,”
Acc. Chem. Res.
1
,
8
(
1968
).
80.
P.-S.
Song
and
K. J.
Tapley
, “
Photochemistry and photobiology of psoralens
,”
Photochem. Photobiol.
29
,
1177
(
1979
).
81.
See https://en.wikipedia.org/wiki/Heracleum_maximum for more information about Heracleum Maximum; accessed on 10/05/2022).
82.
J.
Diekmann
,
J.
Gontcharov
,
S.
Fröbel
,
C.
Torres Ziegenbein
,
W.
Zinth
, and
P.
Gilch
, “
The photoaddition of a psoralen to DNA proceeds via the triplet state
,”
J. Am. Chem. Soc.
141
,
13643
(
2019
).
83.
J.
Tatchen
,
M.
Kleinschmidt
, and
C. M.
Marian
, “
Electronic excitation spectra and singlet–triplet coupling in psoralen and its sulfur and selenium analogs
,”
J. Photochem. Photobiol. A
167
,
201
(
2004
).
84.
L. V.
Slipchenko
and
A. I.
Krylov
, “
Singlet-triplet gaps in diradicals by the spin-flip approach: A benchmark study
,”
J. Chem. Phys.
117
,
4694
(
2002
).
85.
M.
Alessio
and
A. I.
Krylov
, “
Equation-of-motion coupled-cluster protocol for calculating magnetic properties: Theory and applications to single-molecule magnets
,”
J. Chem. Theory Comput.
17
,
4225
(
2021
).
86.
N.
Orms
,
D. R.
Rehn
,
A.
Dreuw
, and
A. I.
Krylov
, “
Characterizing bonding patterns in diradicals and triradicals by density-based wave function analysis: A uniform approach
,”
J. Chem. Theory Comput.
14
,
638
(
2018
).

Supplementary Material

You do not currently have access to this content.