The performance of different quantum mechanics/molecular mechanics embedding models to compute vacuo-to-water solvatochromic shifts is investigated. In particular, both nonpolarizable and polarizable approaches are analyzed and computed results are compared to reference experimental data. We show that none of the approaches outperform the others and that errors strongly depend on the nature of the molecular transition to be described. Thus, we prove that the best choice of embedding model highly depends on the molecular system and that the use of a specific approach as a black box can lead to significant errors and, sometimes, totally wrong predictions.

1.
A.
Warshel
and
M.
Levitt
, “
Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
,”
J. Mol. Biol.
103
,
227
249
(
1976
).
2.
H. M.
Senn
and
W.
Thiel
, “
QM/MM methods for biomolecular systems
,”
Angew. Chem., Int. Ed.
48
,
1198
1229
(
2009
).
3.
T.
Giovannini
,
F.
Egidi
, and
C.
Cappelli
, “
Molecular spectroscopy of aqueous solutions: A theoretical perspective
,”
Chem. Soc. Rev.
49
,
5664
5677
(
2020
).
4.
C.
Cappelli
, “
Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute–solvent systems
,”
Int. J. Quantum Chem.
116
,
1532
1542
(
2016
).
5.
J.
Gao
, “
Energy components of aqueous solution: Insight from hybrid QM/MM simulations using a polarizable solvent model
,”
J. Comput. Chem.
18
,
1061
1071
(
1997
).
6.
H.
Lin
and
D. G.
Truhlar
, “
QM/MM: What have we learned, where are we, and where do we go from here?
,”
Theor. Chem. Acc.
117
,
185
199
(
2007
).
7.
B.
Mennucci
and
S.
Corni
, “
Multiscale modelling of photoinduced processes in composite systems
,”
Nat. Rev. Chem.
3
,
315
330
(
2019
).
8.
M.
Bondanza
,
M.
Nottoli
,
L.
Cupellini
,
F.
Lipparini
, and
B.
Mennucci
, “
Polarizable embedding QM/MM: The future gold standard for complex (bio)systems?
,”
Phys. Chem. Chem. Phys.
22
,
14433
14448
(
2020
).
9.
C.
Curutchet
and
B.
Mennucci
, “
Quantum chemical studies of light harvesting
,”
Chem. Rev.
117
,
294
343
(
2017
).
10.
L.
Cupellini
,
M.
Corbella
,
B.
Mennucci
, and
C.
Curutchet
, “
Electronic energy transfer in biomacromolecules
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1392
(
2019
).
11.
E.
Boulanger
and
J. N.
Harvey
, “
QM/MM methods for free energies and photochemistry
,”
Curr. Opin. Struct. Biol.
49
,
72
76
(
2018
).
12.
T.
Giovannini
,
P.
Lafiosca
, and
C.
Cappelli
, “
A general route to include Pauli repulsion and quantum dispersion effects in QM/MM approaches
,”
J. Chem. Theory Comput.
13
,
4854
4870
(
2017
).
13.
T.
Giovannini
,
P.
Lafiosca
,
B.
Chandramouli
,
V.
Barone
, and
C.
Cappelli
, “
Effective yet reliable computation of hyperfine coupling constants in solution by a QM/MM approach: Interplay between electrostatics and non-electrostatic effects
,”
J. Chem. Phys.
150
,
124102
(
2019
).
14.
T.
Giovannini
,
M.
Ambrosetti
, and
C.
Cappelli
, “
Quantum confinement effects on solvatochromic shifts of molecular solutes
,”
J. Phys. Chem. Lett.
10
,
5823
5829
(
2019
).
15.
J. M. H.
Olsen
,
C.
Steinmann
,
K.
Ruud
, and
J.
Kongsted
, “
Polarizable density embedding: A new QM/QM/MM-based computational strategy
,”
J. Phys. Chem. A
119
,
5344
5355
(
2015
).
16.
L.
Jensen
,
P. T.
van Duijnen
, and
J. G.
Snijders
, “
A discrete solvent reaction field model within density functional theory
,”
J. Chem. Phys.
118
,
514
521
(
2003
).
17.
E.
Boulanger
and
W.
Thiel
, “
Solvent boundary potentials for hybrid QM/MM computations using classical Drude oscillators: A fully polarizable model
,”
J. Chem. Theory Comput.
8
,
4527
4538
(
2012
).
18.
E.
Boulanger
and
W.
Thiel
, “
Toward QM/MM simulation of enzymatic reactions with the Drude oscillator polarizable force field
,”
J. Chem. Theory Comput.
10
,
1795
1809
(
2014
).
19.
D.
Loco
,
É.
Polack
,
S.
Caprasecca
,
L.
Lagardère
,
F.
Lipparini
,
J.-P.
Piquemal
, and
B.
Mennucci
, “
A QM/MM approach using the AMOEBA polarizable embedding: From ground state energies to electronic excitations
,”
J. Chem. Theory Comput.
12
,
3654
3661
(
2016
).
20.
J. M. H.
Olsen
and
J.
Kongsted
, “
Molecular properties through polarizable embedding
,”
Adv. Quantum Chem.
61
,
107
143
(
2011
).
21.
T.
Giovannini
,
A.
Puglisi
,
M.
Ambrosetti
, and
C.
Cappelli
, “
Polarizable QM/MM approach with fluctuating charges and fluctuating dipoles: The QM/FQFμ model
,”
J. Chem. Theory Comput.
15
,
2233
2245
(
2019
).
22.
X.
Wu
,
J.-M.
Teuler
,
F.
Cailliez
,
C.
Clavaguéra
,
D. R.
Salahub
, and
A.
de la Lande
, “
Simulating electron dynamics in polarizable environments
,”
J. Chem. Theory Comput.
13
,
3985
4002
(
2017
).
23.
D.
Loco
,
L.
Lagardère
,
O.
Adjoua
, and
J.-P.
Piquemal
, “
Atomistic polarizable embeddings: Energy, dynamics, spectroscopy, and reactivity
,”
Acc. Chem. Res.
54
,
2812
2822
(
2021
).
24.
L.
Jensen
and
P. T.
van Duijnen
, “
The first hyperpolarizability of p-nitroaniline in 1,4-dioxane: A quantum mechanical/molecular mechanics study
,”
J. Chem. Phys.
123
,
074307
(
2005
).
25.
M.
Caricato
,
F.
Lipparini
,
G.
Scalmani
,
C.
Cappelli
, and
V.
Barone
, “
Vertical electronic excitations in solution with the EOM-CCSD method combined with a polarizable explicit/implicit solvent model
,”
J. Chem. Theory Comput.
9
,
3035
3042
(
2013
).
26.
T.
Giovannini
,
M.
Macchiagodena
,
M.
Ambrosetti
,
A.
Puglisi
,
P.
Lafiosca
,
G.
Lo Gerfo
,
F.
Egidi
, and
C.
Cappelli
, “
Simulating vertical excitation energies of solvated dyes: From continuum to polarizable discrete modeling
,”
Int. J. Quantum Chem.
119
,
e25684
(
2019
).
27.
F.
Segatta
,
L.
Cupellini
,
M.
Garavelli
, and
B.
Mennucci
, “
Quantum chemical modeling of the photoinduced activity of multichromophoric biosystems: Focus review
,”
Chem. Rev.
119
,
9361
9380
(
2019
).
28.
M.
Nottoli
,
L.
Cupellini
,
F.
Lipparini
,
G.
Granucci
, and
B.
Mennucci
, “
Multiscale models for light-driven processes
,”
Annu. Rev. Phys. Chem.
72
,
489
513
(
2021
).
29.
P.
Reinholdt
,
M. S.
Nørby
, and
J.
Kongsted
, “
Modeling of magnetic circular dichroism and UV/Vis absorption spectra using fluctuating charges or polarizable embedding within a resonant-convergent response theory formalism
,”
J. Chem. Theory Comput.
14
,
6391
6404
(
2018
).
30.
S.
Prioli
and
J.
Kongsted
, “
Modeling environmental effects in two-photon circular dichroism calculations
,”
Theor. Chem. Acc.
140
,
138
(
2021
).
31.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
32.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
, “
Dynamical fluctuating charge force fields: Application to liquid water
,”
J. Chem. Phys.
101
,
6141
6156
(
1994
).
33.
J.
Chen
and
T. J.
Martínez
, “
Charge conservation in electronegativity equalization and its implications for the electrostatic properties of fluctuating-charge models
,”
J. Chem. Phys.
131
,
044114
(
2009
).
34.
J.
Chen
,
D.
Hundertmark
, and
T. J.
Martínez
, “
A unified theoretical framework for fluctuating-charge models in atom-space and in bond-space
,”
J. Chem. Phys.
129
,
214113
(
2008
).
35.
L.
Jensen
,
P. T.
van Duijnen
, and
J. G.
Snijders
, “
A discrete solvent reaction field model for calculating molecular linear response properties in solution
,”
J. Chem. Phys.
119
,
3800
3809
(
2003
).
36.
C.
Curutchet
,
A.
Muñoz-Losa
,
S.
Monti
,
J.
Kongsted
,
G. D.
Scholes
, and
B.
Mennucci
, “
Electronic energy transfer in condensed phase studied by a polarizable QM/MM model
,”
J. Chem. Theory Comput.
5
,
1838
1848
(
2009
).
37.
N. H.
List
,
J. M. H.
Olsen
, and
J.
Kongsted
, “
Excited states in large molecular systems through polarizable embedding
,”
Phys. Chem. Chem. Phys.
18
,
20234
20250
(
2016
).
38.
P.
Ren
and
J. W.
Ponder
, “
Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations
,”
J. Comput. Chem.
23
,
1497
1506
(
2002
).
39.
P.
Ren
and
J. W.
Ponder
, “
Polarizable atomic multipole water model for molecular mechanics simulation
,”
J. Phys. Chem. B
107
,
5933
5947
(
2003
).
40.
A.
Stone
,
The Theory of Intermolecular Forces
(
OUP
,
Oxford
,
2013
).
41.
P.
Geerlings
,
F.
De Proft
, and
W.
Langenaeker
, “
Conceptual density functional theory
,”
Chem. Rev.
103
,
1793
1874
(
2003
).
42.
M.
Ambrosetti
,
S.
Skoko
,
T.
Giovannini
, and
C.
Cappelli
, “
Quantum mechanics/fluctuating charge protocol to compute solvatochromic shifts
,”
J. Chem. Theory Comput.
17
,
7146
7156
(
2021
).
43.
I.
Carnimeo
,
C.
Cappelli
, and
V.
Barone
, “
Analytical gradients for MP2, double hybrid functionals, and TD-DFT with polarizable embedding described by fluctuating charges
,”
J. Comput. Chem.
36
,
2271
2290
(
2015
).
44.
T.
Giovannini
,
R. R.
Riso
,
M.
Ambrosetti
,
A.
Puglisi
, and
C.
Cappelli
, “
Electronic transitions for a fully polarizable QM/MM approach based on fluctuating charges and fluctuating dipoles: Linear and corrected linear response regimes
,”
J. Chem. Phys.
151
,
174104
(
2019
).
45.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
, “
Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold
,”
J. Chem. Phys.
108
,
4439
4449
(
1998
).
46.
M.
Caricato
,
B.
Mennucci
,
J.
Tomasi
,
F.
Ingrosso
,
R.
Cammi
,
S.
Corni
, and
G.
Scalmani
, “
Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory
,”
J. Chem. Phys.
124
,
124520
(
2006
).
47.
N. H.
List
,
H. J. A.
Jensen
, and
J.
Kongsted
, “
Local electric fields and molecular properties in heterogeneous environments through polarizable embedding
,”
Phys. Chem. Chem. Phys.
18
,
10070
10080
(
2016
).
48.
S. W.
Rick
,
S. J.
Stuart
,
J. S.
Bader
, and
B. J.
Berne
, “
Fluctuating charge force fields for aqueous solutions
,”
J. Mol. Liq.
65–66
,
31
40
(
1995
).
49.
T.
Giovannini
,
F.
Egidi
, and
C.
Cappelli
, “
Theory and algorithms for chiroptical properties and spectroscopies of aqueous systems
,”
Phys. Chem. Chem. Phys.
22
,
22864
22879
(
2020
).
50.
W. J.
Mortier
,
K.
Van Genechten
, and
J.
Gasteiger
, “
Electronegativity equalization: Application and parametrization
,”
J. Am. Chem. Soc.
107
,
829
835
(
1985
).
51.
R. T.
Sanderson
, “
An interpretation of bond lengths and a classification of bonds
,”
Science
114
,
670
672
(
1951
).
52.
T.
Giovannini
,
L.
Grazioli
,
M.
Ambrosetti
, and
C.
Cappelli
, “
Calculation of IR spectra with a fully polarizable QM/MM approach based on fluctuating charges and fluctuating dipoles
,”
J. Chem. Theory Comput.
15
,
5495
5507
(
2019
).
53.
G.
Marrazzini
,
T.
Giovannini
,
F.
Egidi
, and
C.
Cappelli
, “
Calculation of linear and non-linear electric response properties of systems in aqueous solution: A polarizable quantum/classical approach with quantum repulsion effects
,”
J. Chem. Theory Comput.
16
,
6993
7004
(
2020
).
54.
K.
Aidas
,
A.
Møgelhøj
,
E. J. K.
Nilsson
,
M. S.
Johnson
,
K. V.
Mikkelsen
,
O.
Christiansen
,
P.
Söderhjelm
, and
J.
Kongsted
, “
On the performance of quantum chemical methods to predict solvatochromic effects: The case of acrolein in aqueous solution
,”
J. Chem. Phys.
128
,
194503
(
2008
).
55.
S.
Millefiori
,
G.
Favini
,
A.
Millefiori
, and
D.
Grasso
, “
Electronic spectra and structure of nitroanilines
,”
Spectrochim. Acta, Part A
33
,
21
27
(
1977
).
56.
S. A.
Kovalenko
,
R.
Schanz
,
V. M.
Farztdinov
,
H.
Hennig
, and
N. P.
Ernsting
, “
Femtosecond relaxation of photoexcited para-nitroaniline: Solvation, charge transfer, internal conversion and cooling
,”
Chem. Phys. Lett.
323
,
312
322
(
2000
).
57.
L. P.
Novaki
and
O. A.
El Seoud
, “
Solvatochromism in pure solvents: Effects of the molecular structure of the probe
,”
Ber. Bunsengesellschaft Phys. Chem.
100
,
648
655
(
1996
).
58.
T.
Soujanya
,
T. S. R.
Krishna
, and
A.
Samanta
, “
The nature of 4-aminophthalimide-cyclodextrin inclusion complexes
,”
J. Phys. Chem.
96
,
8544
8548
(
1992
).
59.
I. R.
Politzer
,
K. T.
Crago
,
D. L.
Kiel
, and
T.
Hampton
, “
The effects of β-cyclodextrin on the fluorescence, UV absorption and solubility of selected bimanes in aqueous solutions
,”
Anal. Lett.
22
,
1567
1580
(
1989
).
60.
S. T.
Abdel-Halim
and
M. K.
Awad
, “
Solvatochromism, molecular and electronic structures of trans and cis isomers of a typical styryl pyridinium cyanine dye
,”
J. Mol. Struct.
920
,
332
341
(
2009
).
61.
M. S.
Zakerhamidi
,
M.
Johari-Ahar
,
S. M.
Seyed Ahmadian
, and
R.
Kian
, “
Photo-physical behavior of some antitumor anthracycline in solvent media with different polarity
,”
Spectrochim. Acta, Part A
130
,
257
262
(
2014
).
62.
C.
Reichardt
and
T.
Welton
,
Solvents and Solvent Effects in Organic Chemistry
(
John Wiley & Sons
,
2011
).
63.
I. J.
Arroyo
,
R.
Hu
,
G.
Merino
,
B. Z.
Tang
, and
E.
Peña-Cabrera
, “
The smallest and one of the brightest. Efficient preparation and optical description of the parent borondipyrromethene system
,”
J. Org. Chem.
74
,
5719
5722
(
2009
).
64.
S. T.
Abdel-Halim
and
M. K.
Awad
, “
Absorption, fluorescence, and semiempirical ASED-MO studies on a typical Brooker’s merocyanine dye
,”
J. Mol. Struct.
754
,
16
24
(
2005
).
65.
P.
Jacques
, “
On the relative contributions of nonspecific and specific interactions to the unusual solvtochromism of a typical merocyanine dye
,”
J. Phys. Chem.
90
,
5535
5539
(
1986
).
66.
L.
Martínez-Fernández
,
A. J.
Pepino
,
J.
Segarra-Martí
,
A.
Banyasz
,
M.
Garavelli
, and
R.
Improta
, “
Computing the absorption and emission spectra of 5-methylcytidine in different solvents: A test-case for different solvation models
,”
J. Chem. Theory Comput.
12
,
4430
4439
(
2016
).
67.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
68.
C. A.
Guido
,
P.
Cortona
,
B.
Mennucci
, and
C.
Adamo
, “
On the metric of charge transfer molecular excitations: A simple chemical descriptor
,”
J. Chem. Theory Comput.
9
,
3118
3126
(
2013
).
69.
C. A.
Guido
,
P.
Cortona
, and
C.
Adamo
, “
Effective electron displacements: A tool for time-dependent density functional theory computational spectroscopy
,”
J. Chem. Phys.
140
,
104101
(
2014
).
70.
ADF 2021.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
71.
G.
Te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
, “
Chemistry with ADF
,”
J. Comput. Chem.
22
,
931
967
(
2001
).
72.
AMS 2021.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
73.
Y.
Akinaga
and
S.
Ten-no
, “
Range-separation by the Yukawa potential in long-range corrected density functional theory with Gaussian-type basis functions
,”
Chem. Phys. Lett.
462
,
348
351
(
2008
).
74.
M.
Seth
and
T.
Ziegler
, “
Range-separated exchange functionals with Slater-type functions
,”
J. Chem. Theory Comput.
8
,
901
907
(
2012
).
75.
E.
Van Lenthe
and
E. J.
Baerends
, “
Optimized Slater-type basis sets for the elements 1–118
,”
J. Comput. Chem.
24
,
1142
1156
(
2003
).
76.
P.
Mark
and
L.
Nilsson
, “
Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
,”
J. Phys. Chem. A
105
,
9954
9960
(
2001
).
77.
C.
Reichardt
, “
Solvatochromic dyes as solvent polarity indicators
,”
Chem. Rev.
94
,
2319
2358
(
1994
).
78.
S.
Sok
,
S. Y.
Willow
,
F.
Zahariev
, and
M. S.
Gordon
, “
Solvent-induced shift of the lowest singlet π → π* charge-transfer excited state of p-nitroaniline in water: An application of the TDDFT/EFP1 method
,”
J. Phys. Chem. A
115
,
9801
9809
(
2011
).
79.
M. R.
Momeni
and
A.
Brown
, “
Why do TD-DFT excitation energies of BODIPY/Aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods
,”
J. Chem. Theory Comput.
11
,
2619
2632
(
2015
).
80.
C.
Reichardt
, “
Pyridinium-N-phenolate betaine dyes as empirical indicators of solvent polarity: Some new findings
,”
Pure Appl. Chem.
76
,
1903
1919
(
2004
).
81.
N. A.
Murugan
, “
Modeling solvatochromism of a quinolinium betaine dye in water solvent using sequential hybrid QM/MM and semicontinuum approach
,”
J. Phys. Chem. B
115
,
1056
1061
(
2011
).
82.
S.
Kumoi
,
K.
Oyama
,
T.
Yano
,
H.
Kobayashi
, and
K.
Ueno
, “
Spectrophotometric determination of water in organic solvents with solvatochromic dyes
,”
Talanta
17
,
319
327
(
1970
).
83.
T.
Wada
,
H.
Nakano
, and
H.
Sato
, “
Solvatochromic shift of Brooker’s merocyanine: Hartree–Fock exchange in time dependent density functional calculation and hydrogen bonding effect
,”
J. Chem. Theory Comput.
10
,
4535
4547
(
2014
).
84.
J. O.
Morley
,
R. M.
Morley
,
R.
Docherty
, and
M. H.
Charlton
, “
Fundamental studies on Brooker’s merocyanine
,”
J. Am. Chem. Soc.
119
,
10192
10202
(
1997
).
85.
Y.
Tanaka
,
Y.
Kawashima
,
N.
Yoshida
, and
H.
Nakano
, “
Solvatochromism and preferential solvation of Brooker’s merocyanine in water–methanol mixtures
,”
J. Comput. Chem.
38
,
2411
2419
(
2017
).
86.
Y.
Mao
,
Y.
Shao
,
J.
Dziedzic
,
C.-K.
Skylaris
,
T.
Head-Gordon
, and
M.
Head-Gordon
, “
Performance of the AMOEBA water model in the vicinity of QM solutes: A diagnosis using energy decomposition analysis
,”
J. Chem. Theory Comput.
13
,
1963
1979
(
2017
).

Supplementary Material

You do not currently have access to this content.