The performance of different quantum mechanics/molecular mechanics embedding models to compute vacuo-to-water solvatochromic shifts is investigated. In particular, both nonpolarizable and polarizable approaches are analyzed and computed results are compared to reference experimental data. We show that none of the approaches outperform the others and that errors strongly depend on the nature of the molecular transition to be described. Thus, we prove that the best choice of embedding model highly depends on the molecular system and that the use of a specific approach as a black box can lead to significant errors and, sometimes, totally wrong predictions.
REFERENCES
1.
A.
Warshel
and M.
Levitt
, “Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
,” J. Mol. Biol.
103
, 227
–249
(1976
).2.
H. M.
Senn
and W.
Thiel
, “QM/MM methods for biomolecular systems
,” Angew. Chem., Int. Ed.
48
, 1198
–1229
(2009
).3.
T.
Giovannini
, F.
Egidi
, and C.
Cappelli
, “Molecular spectroscopy of aqueous solutions: A theoretical perspective
,” Chem. Soc. Rev.
49
, 5664
–5677
(2020
).4.
C.
Cappelli
, “Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute–solvent systems
,” Int. J. Quantum Chem.
116
, 1532
–1542
(2016
).5.
J.
Gao
, “Energy components of aqueous solution: Insight from hybrid QM/MM simulations using a polarizable solvent model
,” J. Comput. Chem.
18
, 1061
–1071
(1997
).6.
H.
Lin
and D. G.
Truhlar
, “QM/MM: What have we learned, where are we, and where do we go from here?
,” Theor. Chem. Acc.
117
, 185
–199
(2007
).7.
B.
Mennucci
and S.
Corni
, “Multiscale modelling of photoinduced processes in composite systems
,” Nat. Rev. Chem.
3
, 315
–330
(2019
).8.
M.
Bondanza
, M.
Nottoli
, L.
Cupellini
, F.
Lipparini
, and B.
Mennucci
, “Polarizable embedding QM/MM: The future gold standard for complex (bio)systems?
,” Phys. Chem. Chem. Phys.
22
, 14433
–14448
(2020
).9.
C.
Curutchet
and B.
Mennucci
, “Quantum chemical studies of light harvesting
,” Chem. Rev.
117
, 294
–343
(2017
).10.
L.
Cupellini
, M.
Corbella
, B.
Mennucci
, and C.
Curutchet
, “Electronic energy transfer in biomacromolecules
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
, e1392
(2019
).11.
E.
Boulanger
and J. N.
Harvey
, “QM/MM methods for free energies and photochemistry
,” Curr. Opin. Struct. Biol.
49
, 72
–76
(2018
).12.
T.
Giovannini
, P.
Lafiosca
, and C.
Cappelli
, “A general route to include Pauli repulsion and quantum dispersion effects in QM/MM approaches
,” J. Chem. Theory Comput.
13
, 4854
–4870
(2017
).13.
T.
Giovannini
, P.
Lafiosca
, B.
Chandramouli
, V.
Barone
, and C.
Cappelli
, “Effective yet reliable computation of hyperfine coupling constants in solution by a QM/MM approach: Interplay between electrostatics and non-electrostatic effects
,” J. Chem. Phys.
150
, 124102
(2019
).14.
T.
Giovannini
, M.
Ambrosetti
, and C.
Cappelli
, “Quantum confinement effects on solvatochromic shifts of molecular solutes
,” J. Phys. Chem. Lett.
10
, 5823
–5829
(2019
).15.
J. M. H.
Olsen
, C.
Steinmann
, K.
Ruud
, and J.
Kongsted
, “Polarizable density embedding: A new QM/QM/MM-based computational strategy
,” J. Phys. Chem. A
119
, 5344
–5355
(2015
).16.
L.
Jensen
, P. T.
van Duijnen
, and J. G.
Snijders
, “A discrete solvent reaction field model within density functional theory
,” J. Chem. Phys.
118
, 514
–521
(2003
).17.
E.
Boulanger
and W.
Thiel
, “Solvent boundary potentials for hybrid QM/MM computations using classical Drude oscillators: A fully polarizable model
,” J. Chem. Theory Comput.
8
, 4527
–4538
(2012
).18.
E.
Boulanger
and W.
Thiel
, “Toward QM/MM simulation of enzymatic reactions with the Drude oscillator polarizable force field
,” J. Chem. Theory Comput.
10
, 1795
–1809
(2014
).19.
D.
Loco
, É.
Polack
, S.
Caprasecca
, L.
Lagardère
, F.
Lipparini
, J.-P.
Piquemal
, and B.
Mennucci
, “A QM/MM approach using the AMOEBA polarizable embedding: From ground state energies to electronic excitations
,” J. Chem. Theory Comput.
12
, 3654
–3661
(2016
).20.
J. M. H.
Olsen
and J.
Kongsted
, “Molecular properties through polarizable embedding
,” Adv. Quantum Chem.
61
, 107
–143
(2011
).21.
T.
Giovannini
, A.
Puglisi
, M.
Ambrosetti
, and C.
Cappelli
, “Polarizable QM/MM approach with fluctuating charges and fluctuating dipoles: The QM/FQFμ model
,” J. Chem. Theory Comput.
15
, 2233
–2245
(2019
).22.
X.
Wu
, J.-M.
Teuler
, F.
Cailliez
, C.
Clavaguéra
, D. R.
Salahub
, and A.
de la Lande
, “Simulating electron dynamics in polarizable environments
,” J. Chem. Theory Comput.
13
, 3985
–4002
(2017
).23.
D.
Loco
, L.
Lagardère
, O.
Adjoua
, and J.-P.
Piquemal
, “Atomistic polarizable embeddings: Energy, dynamics, spectroscopy, and reactivity
,” Acc. Chem. Res.
54
, 2812
–2822
(2021
).24.
L.
Jensen
and P. T.
van Duijnen
, “The first hyperpolarizability of p-nitroaniline in 1,4-dioxane: A quantum mechanical/molecular mechanics study
,” J. Chem. Phys.
123
, 074307
(2005
).25.
M.
Caricato
, F.
Lipparini
, G.
Scalmani
, C.
Cappelli
, and V.
Barone
, “Vertical electronic excitations in solution with the EOM-CCSD method combined with a polarizable explicit/implicit solvent model
,” J. Chem. Theory Comput.
9
, 3035
–3042
(2013
).26.
T.
Giovannini
, M.
Macchiagodena
, M.
Ambrosetti
, A.
Puglisi
, P.
Lafiosca
, G.
Lo Gerfo
, F.
Egidi
, and C.
Cappelli
, “Simulating vertical excitation energies of solvated dyes: From continuum to polarizable discrete modeling
,” Int. J. Quantum Chem.
119
, e25684
(2019
).27.
F.
Segatta
, L.
Cupellini
, M.
Garavelli
, and B.
Mennucci
, “Quantum chemical modeling of the photoinduced activity of multichromophoric biosystems: Focus review
,” Chem. Rev.
119
, 9361
–9380
(2019
).28.
M.
Nottoli
, L.
Cupellini
, F.
Lipparini
, G.
Granucci
, and B.
Mennucci
, “Multiscale models for light-driven processes
,” Annu. Rev. Phys. Chem.
72
, 489
–513
(2021
).29.
P.
Reinholdt
, M. S.
Nørby
, and J.
Kongsted
, “Modeling of magnetic circular dichroism and UV/Vis absorption spectra using fluctuating charges or polarizable embedding within a resonant-convergent response theory formalism
,” J. Chem. Theory Comput.
14
, 6391
–6404
(2018
).30.
S.
Prioli
and J.
Kongsted
, “Modeling environmental effects in two-photon circular dichroism calculations
,” Theor. Chem. Acc.
140
, 138
(2021
).31.
W. L.
Jorgensen
, J.
Chandrasekhar
, J. D.
Madura
, R. W.
Impey
, and M. L.
Klein
, “Comparison of simple potential functions for simulating liquid water
,” J. Chem. Phys.
79
, 926
–935
(1983
).32.
S. W.
Rick
, S. J.
Stuart
, and B. J.
Berne
, “Dynamical fluctuating charge force fields: Application to liquid water
,” J. Chem. Phys.
101
, 6141
–6156
(1994
).33.
J.
Chen
and T. J.
Martínez
, “Charge conservation in electronegativity equalization and its implications for the electrostatic properties of fluctuating-charge models
,” J. Chem. Phys.
131
, 044114
(2009
).34.
J.
Chen
, D.
Hundertmark
, and T. J.
Martínez
, “A unified theoretical framework for fluctuating-charge models in atom-space and in bond-space
,” J. Chem. Phys.
129
, 214113
(2008
).35.
L.
Jensen
, P. T.
van Duijnen
, and J. G.
Snijders
, “A discrete solvent reaction field model for calculating molecular linear response properties in solution
,” J. Chem. Phys.
119
, 3800
–3809
(2003
).36.
C.
Curutchet
, A.
Muñoz-Losa
, S.
Monti
, J.
Kongsted
, G. D.
Scholes
, and B.
Mennucci
, “Electronic energy transfer in condensed phase studied by a polarizable QM/MM model
,” J. Chem. Theory Comput.
5
, 1838
–1848
(2009
).37.
N. H.
List
, J. M. H.
Olsen
, and J.
Kongsted
, “Excited states in large molecular systems through polarizable embedding
,” Phys. Chem. Chem. Phys.
18
, 20234
–20250
(2016
).38.
P.
Ren
and J. W.
Ponder
, “Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations
,” J. Comput. Chem.
23
, 1497
–1506
(2002
).39.
P.
Ren
and J. W.
Ponder
, “Polarizable atomic multipole water model for molecular mechanics simulation
,” J. Phys. Chem. B
107
, 5933
–5947
(2003
).40.
41.
P.
Geerlings
, F.
De Proft
, and W.
Langenaeker
, “Conceptual density functional theory
,” Chem. Rev.
103
, 1793
–1874
(2003
).42.
M.
Ambrosetti
, S.
Skoko
, T.
Giovannini
, and C.
Cappelli
, “Quantum mechanics/fluctuating charge protocol to compute solvatochromic shifts
,” J. Chem. Theory Comput.
17
, 7146
–7156
(2021
).43.
I.
Carnimeo
, C.
Cappelli
, and V.
Barone
, “Analytical gradients for MP2, double hybrid functionals, and TD-DFT with polarizable embedding described by fluctuating charges
,” J. Comput. Chem.
36
, 2271
–2290
(2015
).44.
T.
Giovannini
, R. R.
Riso
, M.
Ambrosetti
, A.
Puglisi
, and C.
Cappelli
, “Electronic transitions for a fully polarizable QM/MM approach based on fluctuating charges and fluctuating dipoles: Linear and corrected linear response regimes
,” J. Chem. Phys.
151
, 174104
(2019
).45.
M. E.
Casida
, C.
Jamorski
, K. C.
Casida
, and D. R.
Salahub
, “Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold
,” J. Chem. Phys.
108
, 4439
–4449
(1998
).46.
M.
Caricato
, B.
Mennucci
, J.
Tomasi
, F.
Ingrosso
, R.
Cammi
, S.
Corni
, and G.
Scalmani
, “Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory
,” J. Chem. Phys.
124
, 124520
(2006
).47.
N. H.
List
, H. J. A.
Jensen
, and J.
Kongsted
, “Local electric fields and molecular properties in heterogeneous environments through polarizable embedding
,” Phys. Chem. Chem. Phys.
18
, 10070
–10080
(2016
).48.
S. W.
Rick
, S. J.
Stuart
, J. S.
Bader
, and B. J.
Berne
, “Fluctuating charge force fields for aqueous solutions
,” J. Mol. Liq.
65–66
, 31
–40
(1995
).49.
T.
Giovannini
, F.
Egidi
, and C.
Cappelli
, “Theory and algorithms for chiroptical properties and spectroscopies of aqueous systems
,” Phys. Chem. Chem. Phys.
22
, 22864
–22879
(2020
).50.
W. J.
Mortier
, K.
Van Genechten
, and J.
Gasteiger
, “Electronegativity equalization: Application and parametrization
,” J. Am. Chem. Soc.
107
, 829
–835
(1985
).51.
R. T.
Sanderson
, “An interpretation of bond lengths and a classification of bonds
,” Science
114
, 670
–672
(1951
).52.
T.
Giovannini
, L.
Grazioli
, M.
Ambrosetti
, and C.
Cappelli
, “Calculation of IR spectra with a fully polarizable QM/MM approach based on fluctuating charges and fluctuating dipoles
,” J. Chem. Theory Comput.
15
, 5495
–5507
(2019
).53.
G.
Marrazzini
, T.
Giovannini
, F.
Egidi
, and C.
Cappelli
, “Calculation of linear and non-linear electric response properties of systems in aqueous solution: A polarizable quantum/classical approach with quantum repulsion effects
,” J. Chem. Theory Comput.
16
, 6993
–7004
(2020
).54.
K.
Aidas
, A.
Møgelhøj
, E. J. K.
Nilsson
, M. S.
Johnson
, K. V.
Mikkelsen
, O.
Christiansen
, P.
Söderhjelm
, and J.
Kongsted
, “On the performance of quantum chemical methods to predict solvatochromic effects: The case of acrolein in aqueous solution
,” J. Chem. Phys.
128
, 194503
(2008
).55.
S.
Millefiori
, G.
Favini
, A.
Millefiori
, and D.
Grasso
, “Electronic spectra and structure of nitroanilines
,” Spectrochim. Acta, Part A
33
, 21
–27
(1977
).56.
S. A.
Kovalenko
, R.
Schanz
, V. M.
Farztdinov
, H.
Hennig
, and N. P.
Ernsting
, “Femtosecond relaxation of photoexcited para-nitroaniline: Solvation, charge transfer, internal conversion and cooling
,” Chem. Phys. Lett.
323
, 312
–322
(2000
).57.
L. P.
Novaki
and O. A.
El Seoud
, “Solvatochromism in pure solvents: Effects of the molecular structure of the probe
,” Ber. Bunsengesellschaft Phys. Chem.
100
, 648
–655
(1996
).58.
T.
Soujanya
, T. S. R.
Krishna
, and A.
Samanta
, “The nature of 4-aminophthalimide-cyclodextrin inclusion complexes
,” J. Phys. Chem.
96
, 8544
–8548
(1992
).59.
I. R.
Politzer
, K. T.
Crago
, D. L.
Kiel
, and T.
Hampton
, “The effects of β-cyclodextrin on the fluorescence, UV absorption and solubility of selected bimanes in aqueous solutions
,” Anal. Lett.
22
, 1567
–1580
(1989
).60.
S. T.
Abdel-Halim
and M. K.
Awad
, “Solvatochromism, molecular and electronic structures of trans and cis isomers of a typical styryl pyridinium cyanine dye
,” J. Mol. Struct.
920
, 332
–341
(2009
).61.
M. S.
Zakerhamidi
, M.
Johari-Ahar
, S. M.
Seyed Ahmadian
, and R.
Kian
, “Photo-physical behavior of some antitumor anthracycline in solvent media with different polarity
,” Spectrochim. Acta, Part A
130
, 257
–262
(2014
).62.
C.
Reichardt
and T.
Welton
, Solvents and Solvent Effects in Organic Chemistry
(John Wiley & Sons
, 2011
).63.
I. J.
Arroyo
, R.
Hu
, G.
Merino
, B. Z.
Tang
, and E.
Peña-Cabrera
, “The smallest and one of the brightest. Efficient preparation and optical description of the parent borondipyrromethene system
,” J. Org. Chem.
74
, 5719
–5722
(2009
).64.
S. T.
Abdel-Halim
and M. K.
Awad
, “Absorption, fluorescence, and semiempirical ASED-MO studies on a typical Brooker’s merocyanine dye
,” J. Mol. Struct.
754
, 16
–24
(2005
).65.
P.
Jacques
, “On the relative contributions of nonspecific and specific interactions to the unusual solvtochromism of a typical merocyanine dye
,” J. Phys. Chem.
90
, 5535
–5539
(1986
).66.
L.
Martínez-Fernández
, A. J.
Pepino
, J.
Segarra-Martí
, A.
Banyasz
, M.
Garavelli
, and R.
Improta
, “Computing the absorption and emission spectra of 5-methylcytidine in different solvents: A test-case for different solvation models
,” J. Chem. Theory Comput.
12
, 4430
–4439
(2016
).67.
J.
Tomasi
, B.
Mennucci
, and R.
Cammi
, “Quantum mechanical continuum solvation models
,” Chem. Rev.
105
, 2999
–3094
(2005
).68.
C. A.
Guido
, P.
Cortona
, B.
Mennucci
, and C.
Adamo
, “On the metric of charge transfer molecular excitations: A simple chemical descriptor
,” J. Chem. Theory Comput.
9
, 3118
–3126
(2013
).69.
C. A.
Guido
, P.
Cortona
, and C.
Adamo
, “Effective electron displacements: A tool for time-dependent density functional theory computational spectroscopy
,” J. Chem. Phys.
140
, 104101
(2014
).70.
ADF 2021.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
71.
G.
Te Velde
, F. M.
Bickelhaupt
, E. J.
Baerends
, C.
Fonseca Guerra
, S. J. A.
van Gisbergen
, J. G.
Snijders
, and T.
Ziegler
, “Chemistry with ADF
,” J. Comput. Chem.
22
, 931
–967
(2001
).72.
AMS 2021.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
73.
Y.
Akinaga
and S.
Ten-no
, “Range-separation by the Yukawa potential in long-range corrected density functional theory with Gaussian-type basis functions
,” Chem. Phys. Lett.
462
, 348
–351
(2008
).74.
M.
Seth
and T.
Ziegler
, “Range-separated exchange functionals with Slater-type functions
,” J. Chem. Theory Comput.
8
, 901
–907
(2012
).75.
E.
Van Lenthe
and E. J.
Baerends
, “Optimized Slater-type basis sets for the elements 1–118
,” J. Comput. Chem.
24
, 1142
–1156
(2003
).76.
P.
Mark
and L.
Nilsson
, “Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
,” J. Phys. Chem. A
105
, 9954
–9960
(2001
).77.
C.
Reichardt
, “Solvatochromic dyes as solvent polarity indicators
,” Chem. Rev.
94
, 2319
–2358
(1994
).78.
S.
Sok
, S. Y.
Willow
, F.
Zahariev
, and M. S.
Gordon
, “Solvent-induced shift of the lowest singlet π → π* charge-transfer excited state of p-nitroaniline in water: An application of the TDDFT/EFP1 method
,” J. Phys. Chem. A
115
, 9801
–9809
(2011
).79.
M. R.
Momeni
and A.
Brown
, “Why do TD-DFT excitation energies of BODIPY/Aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods
,” J. Chem. Theory Comput.
11
, 2619
–2632
(2015
).80.
C.
Reichardt
, “Pyridinium-N-phenolate betaine dyes as empirical indicators of solvent polarity: Some new findings
,” Pure Appl. Chem.
76
, 1903
–1919
(2004
).81.
N. A.
Murugan
, “Modeling solvatochromism of a quinolinium betaine dye in water solvent using sequential hybrid QM/MM and semicontinuum approach
,” J. Phys. Chem. B
115
, 1056
–1061
(2011
).82.
S.
Kumoi
, K.
Oyama
, T.
Yano
, H.
Kobayashi
, and K.
Ueno
, “Spectrophotometric determination of water in organic solvents with solvatochromic dyes
,” Talanta
17
, 319
–327
(1970
).83.
T.
Wada
, H.
Nakano
, and H.
Sato
, “Solvatochromic shift of Brooker’s merocyanine: Hartree–Fock exchange in time dependent density functional calculation and hydrogen bonding effect
,” J. Chem. Theory Comput.
10
, 4535
–4547
(2014
).84.
J. O.
Morley
, R. M.
Morley
, R.
Docherty
, and M. H.
Charlton
, “Fundamental studies on Brooker’s merocyanine
,” J. Am. Chem. Soc.
119
, 10192
–10202
(1997
).85.
Y.
Tanaka
, Y.
Kawashima
, N.
Yoshida
, and H.
Nakano
, “Solvatochromism and preferential solvation of Brooker’s merocyanine in water–methanol mixtures
,” J. Comput. Chem.
38
, 2411
–2419
(2017
).86.
Y.
Mao
, Y.
Shao
, J.
Dziedzic
, C.-K.
Skylaris
, T.
Head-Gordon
, and M.
Head-Gordon
, “Performance of the AMOEBA water model in the vicinity of QM solutes: A diagnosis using energy decomposition analysis
,” J. Chem. Theory Comput.
13
, 1963
–1979
(2017
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.