Weakly bound CO2-Rg2 trimers are studied by high-resolution (0.002 cm−1) infrared spectroscopy in the region of the CO2 ν3 fundamental band (≈2350 cm−1), using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion with an effective rotational temperature of about 2 K. CO2–Ar2 spectra have been reported previously, but they are extended here to include Rg = Ne, Kr, and Xe as well as new combination and hot bands. For Kr and Xe, a unified scaled parameter scheme is used to account for the many possible isotopic species. Vibrational shifts of CO2-Rg2 trimers are compared to those of CO2-Rg dimers, and in all cases the trimer shifts are slightly more positive (blue-shifted) than expected on the basis of linear extrapolation from the dimer. Combination bands directly measure an intermolecular vibrational mode (the CO2 rock) and give values of about 32.2, 33.8, and 34.7 cm−1 for CO2–Ar2, –Kr2, and –Xe2. Structural parameters derived for CO2-Rg2 trimers are compared with those of CO2-Rg and Rg2 dimers. Spectra of the mixed trimers CO2-Rg-He are also reported.

1.
J. M.
Steed
,
T. A.
Dixon
, and
W.
Klemperer
, “
Determination of the structure of ArCO2 by radio frequency and microwave spectroscopy
,”
J. Chem. Phys.
70
,
4095
4100
(
1979
);
2.
M. J.
Weida
,
J. M.
Sperhac
,
D. J.
Nesbitt
, and
J. M.
Hutson
, “
Signatures of large amplitude motion in a weakly bound complex: High‐resolution IR spectroscopy and quantum calculations for HeCO2
,”
J. Chem. Phys.
101
,
8351
(
1994
).
3.
Y.
Xu
and
W.
Jäger
, “
Fourier transform microwave spectra of the very weakly bound He–CO2 dimer
,”
J. Mol. Struct.
599
,
211
(
2001
).
4.
A. R. W.
McKellar
, “
Infrared spectra of isotopic CO2–He complexes
,”
J. Chem. Phys.
125
,
114310
(
2006
).
5.
R. W.
Randall
,
M. A.
Walsh
, and
B. J.
Howard
, “
Infrared absorption spectroscopy of rare-gas–CO2 clusters produced in supersonic expansions
,”
Faraday Discuss. Chem. Soc.
85
,
13
21
(
1988
).
6.
G. T.
Fraser
,
A. S.
Pine
, and
R. D.
Suenram
, “
Optothermal‐infrared and pulsed‐nozzle Fourier‐transform microwave spectroscopy of rare gas–CO2 complexes
,”
J. Chem. Phys.
88
,
6157
6167
(
1988
).
7.
Y.
Xu
and
W.
Jäger
, “
Rotational spectra of NeCO2 isotopomers
,”
J. Mol. Spectrosc.
192
,
435
440
(
1998
).
8.
T.
Konno
,
S.-i.
Fukuda
, and
Y.
Ozaki
, “
Infrared spectroscopy of Ne–12C18O2 and Xe–12C18O2: Change in the CO2 intramolecular potential by formation of rare gas–CO2 complexes
,”
Chem. Phys. Lett.
421
,
421
426
(
2006
).
9.
A. J.
Barclay
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
New infrared spectra of CO2–Ne: Fundamental for CO222Ne isotopologue, intermolecular bend, and symmetry breaking of the intramolecular CO2 bend
,”
Chem. Phys. Lett.
779
,
138874
(
2021
).
10.
H.
Mäder
,
N.
Heineking
,
W.
Stahl
,
W.
Jäger
, and
Y.
Xu
, “
Rotational spectrum of the isotopically substituted van der Waals complex Ar–CO2 investigated with a molecular beam Fourier transform microwave spectrometer
,”
J. Chem. Soc., Faraday Trans.
92
,
901
905
(
1996
).
11.
S. W.
Sharpe
,
R.
Sheeks
,
C.
Wittig
, and
R. A.
Beaudet
, “
Infrared absorption spectroscopy of CO2-Ar complexes
,”
Chem. Phys. Lett.
151
,
267
272
(
1988
).
12.
S. W.
Sharpe
,
D.
Reifschneider
,
C.
Wittig
, and
R. A.
Beaudet
, “
Infrared absorption spectroscopy of the CO2–Ar complex in the 2376 cm−1 combination band region: The intermolecular bend
,”
J. Chem. Phys.
94
,
233
238
(
1991
).
13.
Y.
Ozaki
,
K.
Horiai
,
T.
Konno
, and
H.
Uehara
, “
Infrared absorption spectroscopy of Ar–12C18O2: Change in the intramolecular potential upon complex formation
,”
Chem. Phys. Lett.
335
,
188
194
(
2001
).
14.
J.
Thiévin
,
Y.
Cadudal
,
R.
Georges
, and
A. A.
Vigasin
, “
Direct FTIR high resolution probe of small and medium size Arn(CO2)m van der Waals complexes formed in a slit supersonic expansion
,”
J. Mol. Spectrosc.
240
,
141
152
(
2006
).
15.
T. A.
Gartner
,
A. J.
Barclay
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
Symmetry breaking of the bending mode of CO2 in the presence of Ar
,”
Phys. Chem. Chem. Phys.
22
,
21488
(
2020
).
16.
M.
Iida
,
Y.
Ohshima
, and
Y.
Endo
, “
Induced dipole moments and intermolecular force fields of rare gas-CO2 complexes studied by Fourier-transform microwave spectroscopy
,”
J. Phys. Chem.
97
,
357
362
(
1993
).
17.
T.
Konno
,
S.-i.
Fukuda
, and
Y.
Ozaki
, “
Infrared spectroscopy of Kr–12C18O2: Change in the CO2 intramolecular potential by complex formation and isotope effect on the vibrationally averaged intermolecular geometry
,”
Chem. Phys. Lett.
414
,
331
335
(
2005
).
18.
T.
Gartner
,
S.
Ghebretnsae
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
Spectra of CO2–Kr in the 4.3 μm region: Intermolecular bend and symmetry breaking of the intramolecular CO2 bend
,”
ChemistrySelect
7
,
e202202601
(
2022
).
19.
A. J.
Barclay
,
A. R. W.
McKellar
,
C. M.
Western
, and
N.
Moazzen-Ahmadi
, “
New infrared spectra of CO2–Xe: Modelling Xe isotope effects, intermolecular bend and stretch, and symmetry breaking of the CO2 bend
,”
Mol. Phys.
119
,
e1919325
(
2021
).
20.
Y. J.
Xu
,
W.
Jager
, and
M. C. L.
Gerry
, “
Pulsed molecular beam microwave Fourier transform spectroscopy of the van der Waals trimer Ar2-CO2
,”
J. Mol. Spectrosc.
157
,
132
(
1993
).
21.
J. M.
Sperhac
,
M. J.
Weida
, and
D. J.
Nesbitt
, “
Infrared spectroscopy of Ar2CO2 trimer: Vibrationally averaged structures, solvent shifts, and three‐body effects
,”
J. Chem. Phys.
104
,
2202
(
1996
).
22.
J.
Tang
,
A. R. W.
McKellar
,
X.-G.
Wang
, and
T.
Carrington
, Jr.
, “
Theoretical and experimental study of infrared spectra of He2-CO2
,”
Can. J. Phys.
87
,
417
423
(
2009
).
23.
M.
Rezaei
,
K. H.
Michaelian
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
Infrared spectra of the Ne2–N2O, Ar2–N2O trimers
,”
J. Mol. Spectrosc.
278
,
17
22
(
2012
).
24.
Y.
Xu
,
M. C. L.
Gerry
,
J. P.
Connelly
, and
B. J.
Howard
, “
The microwave spectrum, structure, and harmonic force field of the van der Waals trimer Ar2–OCS
,”
J. Chem. Phys.
98
,
2735
(
1993
).
25.
Y.
Xu
and
W.
Jäger
, “
Spectroscopic investigation of the ternary Ne–Ne–OCS van der Waals cluster: Additive and non-additive interactions
,”
Phys. Chem. Chem. Phys.
2
,
3549
(
2000
).
26.
H. S.
Gutowsky
,
T. D.
Klots
, and
C. E.
Dykstra
, “
Rotational spectrum and potential surface for Ar2–HCN: A T‐shaped cluster with internal rotation
,”
J. Chem. Phys.
93
,
6216
(
1990
).
27.
Z.
Kisiel
,
B. A.
Pietrewicz
, and
L.
Pszczółkowski
, “
The observation and characterization by rotational spectroscopy of the weakly bound trimer Ar2HBr
,”
J. Chem. Phys.
117
,
8248
(
2002
).
28.
M.
Rezaei
,
S.
Sheybani-Deloui
,
N.
Moazzen-Ahmadi
,
K. H.
Michaelian
, and
A. R. W.
McKellar
, “
CO dimer: The infrared spectrum revisited
,”
J. Phys. Chem. A
117
,
9612
9620
(
2013
).
29.
C. M.
Western
,
J. Quant. Spectrosc. Radiat. Transfer
186
,
221
(
2017
).
30.
J.
Rak
,
M. M.
Szczȩśniak
,
G.
Chałasiński
, and
S. M.
Cybulski
, “
The effect of two- and three-body interactions in Arn CO2 (n=1,2) on the asymmetric stretching CO2 coordinate: An ab initio study
,”
J. Chem. Phys.
106
,
10215
(
1997
).
31.
H.
Li
and
R. J.
Le Roy
, “
Analytic three-dimensional ‘MLR’ potential energy surface for CO2–He, and its predicted microwave and infrared spectra
,”
Phys. Chem. Chem. Phys.
10
,
4128
4137
(
2008
).
32.
H.
Li
,
N.
Blinov
,
P.-N.
Roy
, and
R. J.
Le Roy
, “
Path-integral Monte Carlo simulation of ν3 vibrational shifts for CO2 in (He)n clusters critically tests the He–CO2 potential energy surface
,”
J. Chem. Phys.
130
,
144305
(
2009
).
33.
Z.
Kisiel
, PROSPE—Programs for Rotational Spectroscopy, http://info.ifpan.edu.pl/∼kisiel/prospe.html.
34.
U. K.
Deiters
and
R. J.
Sadus
, “
Two-body interatomic potentials for He, Ne, Ar, Kr, and Xe from ab initio data
,”
J. Chem. Phys.
150
,
134504
(
2019
).
35.
A.
Wüest
and
F.
Merkt
, “
Determination of the interaction potential of the ground electronic state of Ne2 by high-resolution vacuum ultraviolet laser spectroscopy
,”
J. Chem. Phys.
118
,
8807
(
2003
).
36.
K.
Mizuse
,
U.
Sato
,
Y.
Tobata
, and
Y.
Ohshima
, “
Rotational spectroscopy of the argon dimer by time-resolved Coulomb explosion imaging of rotational wave packets
,”
Phys. Chem. Chem. Phys.
24
,
11014
11022
(
2022
).
37.
P. E.
LaRocque
,
R. H.
Lipson
,
P. R.
Herman
, and
B. P.
Stoicheff
, “
Vacuum ultraviolet laser spectroscopy. IV. Spectra of Kr2 and constants of the ground and excited states
,”
J. Chem. Phys.
84
,
6627
(
1986
).
38.
A. J.
Barclay
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
Observing the completion of the first solvation shell of carbon dioxide in argon from rotationally resolved spectra
,”
J. Phys. Chem. Lett.
13
,
6311
6315
(
2022
).

Supplementary Material

You do not currently have access to this content.