Nitroaromatic compounds can photorelease nitric oxide after UV absorption. The efficiency of the photoreaction depends on the molecular structure, and two features have been pointed out as particularly important for the yield of the process: the presence of methyl groups at the ortho position with respect to the nitro group and the degree of conjugation of the molecule. In this paper, we provide a theoretical characterization at the CASPT2//CASSCF (complete active space second-order perturbation theory//complete active space self-consistent field) level of theory of the photorelease of NO for four molecules derived from nitrobenzene through the addition of ortho methyl groups and/or the elongation of the conjugation. Our previously described mechanism obtained for the photorelease of NO in nitrobenzene has been adopted as a model for the process. According to this model, the process proceeds through a reactive singlet–triplet crossing (STC) region that the system can reach from the triplet 3Oπ*) minimum. The energy barrier that must be surmounted in order to populate the reactive STC can be associated with the efficiency of the photoreaction. Here, the obtained results display clear differences in the efficiency of the photoreaction in the studied systems and can be correlated with experimental results. Thus, the model proves its ability to highlight the differences in the photoreaction efficiency for the nitroaromatic compounds studied here.

1.
R.
Atkinson
,
E. C.
Tuazon
,
T. J.
Wallington
,
S. M.
Aschmann
,
J.
Arey
,
A. M.
Winer
, and
J. N.
Pitts
, “
Atmospheric chemistry of aniline, N,N-dimethylanillne, pyridine, 1,3,5-triazine, and nitrobenzene
,”
Environ. Sci. Technol.
21
,
64
72
(
1987
).
2.
T. B.
Brill
and
K. J.
James
, “
Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives
,”
Chem. Rev.
93
,
2667
2692
(
1993
).
3.
S.
Sortino
, “
Light-controlled nitric oxide delivering molecular assemblies
,”
Chem. Soc. Rev.
39
,
2903
2913
(
2010
).
4.
T.
Suzuki
,
O.
Nagae
,
Y.
Kato
,
H.
Nakagawa
,
K.
Fukuhara
, and
N.
Miyata
, “
Photoinduced nitric oxide release from nitrobenzene derivatives
,”
J. Am. Chem. Soc.
127
,
11720
11726
(
2005
).
5.
H.
Nakagawa
,
K.
Hishikawa
,
K.
Eto
,
N.
Ieda
,
T.
Namikawa
,
K.
Kamada
,
T.
Suzuki
,
N.
Miyata
, and
J.-i.
Nabekura
, “
Fine spatiotemporal control of nitric oxide release by infrared pulse-laser irradiation of a photolabile donor
,”
ACS Chem. Biol.
8
,
2493
2500
(
2013
).
6.
D. B.
Galloway
,
J. A.
Bartz
,
L. G.
Huey
, and
F. F.
Crim
, “
Pathways and kinetic energy disposal in the photodissociation of nitrobenzene
,”
J. Chem. Phys.
98
,
2107
2114
(
1993
).
7.
Y.
He
,
A.
Gahlmann
,
J. S.
Feenstra
,
S. T.
Park
, and
A. H.
Zewail
, “
Ultrafast electron diffraction: Structural dynamics of molecular rearrangement in the NO release from nitrobenzene
,”
Chem.-Asian J.
1
,
56
63
(
2006
).
8.
W.
Rodríguez-Córdoba
,
L.
Gutiérrez-Arzaluz
,
F.
Cortés-Guzmán
, and
J.
Peon
, “
Excited state dynamics and photochemistry of nitroaromatic compounds
,”
Chem. Commun.
57
,
12218
12235
(
2021
).
9.
M.-F.
Lin
,
Y. T.
Lee
,
C.-K.
Ni
,
S.
Xu
, and
M. C.
Lin
, “
Photodissociation dynamics of nitrobenzene and o-nitrotoluene
,”
J. Chem. Phys.
126
,
064310
(
2007
).
10.
M. L.
Hause
,
N.
Herath
,
R.
Zhu
,
M. C.
Lin
, and
A. G.
Suits
, “
Roaming-mediated isomerization in the photodissociation of nitrobenzene
,”
Nat. Chem.
3
,
932
937
(
2011
).
11.
A.
Giussani
, “
Toward the understanding of the photophysics and photochemistry of 1-nitronaphthalene under solar radiation: The first theoretical evidence of a photodegradation intramolecular rearrangement mechanism involving the triplet states
,”
J. Chem. Theory Comput.
10
,
3987
3995
(
2014
).
12.
A.
Giussani
and
G. A.
Worth
, “
Insights into the complex photophysics and photochemistry of the simplest nitroaromatic compound: A CASPT2//CASSCF study on nitrobenzene
,”
J. Chem. Theory Comput.
13
,
2777
2788
(
2017
).
13.
K. J.
Blackshaw
,
B. I.
Ortega
,
N.-K.
Quartey
,
W. E.
Fritzeen
,
R. T.
Korb
,
A. K.
Ajmani
,
L.
Montgomery
,
M.
Marracci
,
G. G.
Vanegas
,
J.
Galvan
,
Z.
Sarvas
,
A. S.
Petit
, and
N. M.
Kidwell
, “
Nonstatistical dissociation dynamics of nitroaromatic chromophores
,”
J. Phys. Chem. A
123
,
4262
4273
(
2019
).
14.
A.
Giussani
and
G. A.
Worth
, “
Similar chemical structures, dissimilar triplet quantum yields: A CASPT2 model rationalizing the trend of triplet quantum yields in nitroaromatic systems
,”
Phys. Chem. Chem. Phys.
21
,
10514
10522
(
2019
).
15.
A.
Giussani
and
G. A.
Worth
, “
How important is roaming in the photodegradation of nitrobenzene?
,”
Phys. Chem. Chem. Phys.
22
,
15945
15952
(
2020
).
16.
L.
Saalbach
,
N.
Kotsina
,
S. W.
Crane
,
M. J.
Paterson
, and
D.
Townsend
, “
Ultraviolet excitation dynamics of nitrobenzenes
,”
J. Phys. Chem. A
125
,
7174
7184
(
2021
).
17.
O. L.
Chapman
,
D. C.
Heckert
,
J. W.
Reasoner
, and
S. P.
Thackaberry
, “
Photochemical studies on 9-nitroanthracene1
,”
J. Am. Chem. Soc.
88
,
5550
5554
(
1966
).
18.
A.
Giussani
,
M.
Merchán
,
J. P.
Gobbo
, and
A. C.
Borin
, “
Relaxation mechanisms of 5-azacytosine
,”
J. Chem. Theory Comput.
10
,
3915
3924
(
2014
).
19.
B. O.
Roos
, “
The complete active space SCF method in a Fock‐matrix‐based super‐CI formulation
,”
Int. J. Quantum Chem.
18
,
175
189
(
1980
).
20.
K.
Andersson
,
P. Å.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
1226
(
1992
).
21.
D.
Cremer
, “
Møller–Plesset perturbation theory: From small molecule methods to methods for thousands of atoms
,”
Wiley Interdiscip. Rev. Comput. Mol. Sci.
1
,
509
530
(
2011
).
22.
P.-O.
Widmark
,
P. Å.
Malmqvist
, and
B. O.
Roos
, “
Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. I. First row atoms
,”
Theor. Chim. Acta
77
,
291
306
(
1990
).
23.
K.
Pierloot
,
B.
Dumez
,
P.-O.
Widmark
, and
B. O.
Roos
, “
Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions
,”
Theor. Chim. Acta
90
,
87
(
1995
).
24.
I.
Fdez Galván
,
M.
Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
,
N. A.
Bogdanov
,
R. K.
Carlson
,
L. F.
Chibotaru
,
J.
Creutzberg
,
N.
Dattani
,
M. G.
Delcey
,
S. S.
Dong
,
A.
Dreuw
,
L.
Freitag
,
L. M.
Frutos
,
L.
Gagliardi
,
F.
Gendron
,
A.
Giussani
,
L.
González
,
G.
Grell
,
M.
Guo
,
C. E.
Hoyer
,
M.
Johansson
,
S.
Keller
,
S.
Knecht
,
G.
Kovačević
,
E.
Källman
,
G.
Li Manni
,
M.
Lundberg
,
Y.
Ma
,
S.
Mai
,
J. P.
Malhado
,
P. Å.
Malmqvist
,
P.
Marquetand
,
S. A.
Mewes
,
J.
Norell
,
M.
Olivucci
,
M.
Oppel
,
Q. M.
Phung
,
K.
Pierloot
,
F.
Plasser
,
M.
Reiher
,
A. M.
Sand
,
I.
Schapiro
,
P.
Sharma
,
C. J.
Stein
,
L. K.
Sørensen
,
D. G.
Truhlar
,
M.
Ugandi
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
O.
Weser
,
T. A.
Wesołowski
,
P.-O.
Widmark
,
S.
Wouters
,
A.
Zech
,
J. P.
Zobel
, and
R.
Lindh
, “
OpenMolcas: From source code to insight
,”
J. Chem. Theory Comput.
15
,
5925
5964
(
2019
).
25.
N.
Forsberg
and
P.-Å.
Malmqvist
, “
Multiconfiguration perturbation theory with imaginary level shift
,”
Chem. Phys. Lett.
274
,
196
204
(
1997
).
26.
T. B.
Pedersen
,
F.
Aquilante
, and
R.
Lindh
, “
Density fitting with auxiliary basis sets from Cholesky decompositions
,”
Theor. Chem. Acc.
124
,
1
10
(
2009
).
27.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P.-Å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitoňák
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
, “
MOLCAS 7: The next generation
,”
J. Comput. Chem.
31
,
224
247
(
2010
).
28.
M.
Merchán
,
L.
Serrano-Andrés
,
M. A.
Robb
, and
L.
Blancafort
, “
Triplet-state formation along the ultrafast decay of excited singlet cytosine: Supporting information
,”
J. Am. Chem. Soc.
127
,
1820
1825
(
2005
).
29.
J.-M.
Mewes
,
V.
Jovanović
,
C. M.
Marian
, and
A.
Dreuw
, “
On the molecular mechanism of non-radiative decay of nitrobenzene and the unforeseen challenges this simple molecule holds for electronic structure theory
,”
Phys. Chem. Chem. Phys.
16
,
12393
12406
(
2014
).
30.
J.
Soto
and
M.
Algarra
, “
Electronic structure of nitrobenzene: A benchmark example of the accuracy of the multi-state CASPT2 theory
,”
J. Phys. Chem. A
125
,
9431
9437
(
2021
).
31.
A.
Domenicano
,
G.
Schultz
,
I.
Hargittai
,
M.
Colapietro
,
G.
Portalone
,
P.
George
, and
C. W.
Bock
, “
Molecular structure of nitrobenzene in the planar and orthogonal conformations—A concerted study by electron diffraction, X-ray crystallography, and molecular orbital calculations
,”
Struct. Chem.
1
,
107
122
(
1990
).
32.
R. A.
Vogt
and
C. E.
Crespo-Hernández
, “
Conformational control in the population of the triplet state and photoreactivity of nitronaphthalene derivatives
,”
J. Phys. Chem. A
117
,
14100
14108
(
2013
).
33.
M.
Takezaki
,
N.
Hirota
, and
M.
Terazima
, “
Nonradiative relaxation processes and electronically excited states of nitrobenzene studied by picosecond time-resolved transient grating method
,”
J. Phys. Chem. A
101
,
3443
3448
(
1997
).
34.
Y.
Orozco-Gonzalez
,
K.
Coutinho
,
J.
Peon
, and
S.
Canuto
, “
Theoretical study of the absorption and nonradiative deactivation of 1-nitronaphthalene in the low-lying singlet and triplet excited states including methanol and ethanol solvent effects
,”
J. Chem. Phys.
137
,
054307
(
2012
).
35.
A.
Nenov
,
A.
Giussani
,
J.
Segarra-Martí
,
V. K.
Jaiswal
,
I.
Rivalta
,
G.
Cerullo
,
S.
Mukamel
, and
M.
Garavelli
, “
Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy
,”
J. Chem. Phys.
142
,
212443
(
2015
).
36.
J.
Segarra-Martí
,
V. K.
Jaiswal
,
A. J.
Pepino
,
A.
Giussani
,
A.
Nenov
,
S.
Mukamel
,
M.
Garavelli
, and
I.
Rivalta
, “
Two-dimensional electronic spectroscopy as a tool for tracking molecular conformations in DNA/RNA aggregates
,”
Faraday Discuss.
207
,
233
250
(
2018
).

Supplementary Material

You do not currently have access to this content.