Spherically symmetric atom-centered descriptors of atomic environments have been widely used for constructing potential or free energy surfaces of atomistic and colloidal systems and to characterize local structures using machine learning techniques. However, when particle shapes are non-spherical, as in the case of rods and ellipsoids, standard spherically symmetric structure functions alone produce imprecise descriptions of local environments. In order to account for the effects of orientation, we introduce two- and three-body orientation-dependent particle-centered descriptors for systems composed of rod-like particles. To demonstrate the suitability of the proposed functions, we use an efficient feature selection scheme and simple linear regression to construct coarse-grained many-body interaction potentials for computationally efficient simulations of model systems consisting of colloidal particles with an anisotropic shape: mixtures of colloidal rods and non-adsorbing polymer coils, hard rods enclosed by an elastic microgel shell, and ligand-stabilized nanorods. We validate the machine-learning (ML) effective many-body potentials based on orientation-dependent symmetry functions by using them in direct coexistence simulations to map out the phase behavior of colloidal rods and non-adsorbing polymer coils. We find good agreement with the results obtained from simulations of the true binary mixture, demonstrating that the effective interactions are well described by the orientation-dependent ML potentials.

1.
C. M.
Care
and
D. J.
Cleaver
, “
Computer simulation of liquid crystals
,”
Rep. Prog. Phys.
68
,
2665
(
2005
).
2.
M. P.
Allen
, “
Molecular simulation of liquid crystals
,”
Mol. Phys.
117
,
2391
2417
(
2019
).
3.
B.
Ruzicka
and
E.
Zaccarelli
, “
A fresh look at the Laponite phase diagram
,”
Soft Matter
7
,
1268
1286
(
2011
).
4.
S. C.
Glotzer
and
M. J.
Solomon
, “
Anisotropy of building blocks and their assembly into complex structures
,”
Nat. Mater.
6
,
557
562
(
2007
).
5.
C.
Wetter
, “
Die flüssigkristalle des tabakmosaikvirus
,”
Biol. Unserer Zeit
15
,
81
89
(
1985
).
6.
Z.
Dogic
and
S.
Fraden
, “
Smectic phase in a colloidal suspension of semiflexible virus particles
,”
Phys. Rev. Lett.
78
,
2417
(
1997
).
7.
E.
Grelet
, “
Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses
,”
Phys. Rev. X
4
,
021053
(
2014
).
8.
P. A.
Buining
,
A. P.
Philipse
, and
H. N. W.
Lekkerkerker
, “
Phase behavior of aqueous dispersions of colloidal boehmite rods
,”
Langmuir
10
,
2106
2114
(
1994
).
9.
H.
Maeda
and
Y.
Maeda
, “
Liquid crystal formation in suspensions of hard rodlike colloidal particles: Direct observation of particle arrangement and self-ordering behavior
,”
Phys. Rev. Lett.
90
,
018303
(
2003
).
10.
B. D.
Busbee
,
S. O.
Obare
, and
C. J.
Murphy
, “
An improved synthesis of high-aspect-ratio gold nanorods
,”
Adv. Mater.
15
,
414
416
(
2003
).
11.
A.
Kuijk
,
D. V.
Byelov
,
A. V.
Petukhov
,
A.
Van Blaaderen
, and
A.
Imhof
, “
Phase behavior of colloidal silica rods
,”
Faraday Discuss.
159
,
181
199
(
2012
).
12.
C.
Schütz
,
M.
Agthe
,
A. B.
Fall
,
K.
Gordeyeva
,
V.
Guccini
,
M.
Salajková
,
T. S.
Plivelic
,
J. P. F.
Lagerwall
,
G.
Salazar-Alvarez
, and
L.
Bergström
, “
Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction
,”
Langmuir
31
,
6507
6513
(
2015
).
13.
S. N.
Hosseini
,
A.
Grau‐Carbonell
,
A. G.
Nikolaenkova
,
X.
Xie
,
X.
Chen
,
A.
Imhof
,
A.
Blaaderen
, and
P. J.
Baesjou
, “
Smectic liquid crystalline titanium dioxide nanorods: Reducing attractions by optimizing ligand density
,”
Adv. Funct. Mater.
30
,
2005491
(
2020
).
14.
Y.
Xie
,
S.
Guo
,
Y.
Ji
,
C.
Guo
,
X.
Liu
,
Z.
Chen
,
X.
Wu
, and
Q.
Liu
, “
Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol
,”
Langmuir
27
,
11394
11400
(
2011
).
15.
G.
Odriozola
and
F. d. J.
Guevara-Rodríguez
, “
Communication: Equation of state of hard oblate ellipsoids by replica exchange Monte Carlo
,”
J. Chem. Phys.
134
,
201103
(
2011
).
16.
P. G.
Bolhuis
,
A. A.
Louis
, and
J. P.
Hansen
, “
Many-body interactions and correlations in coarse-grained descriptions of polymer solutions
,”
Phys. Rev. E
64
,
021801
(
2001
).
17.
C. N.
Likos
, “
Effective interactions in soft condensed matter physics
,”
Phys. Rep.
348
,
267
439
(
2001
).
18.
M.
Watzlawek
,
C. N.
Likos
, and
H.
Löwen
, “
Phase diagram of star polymer solutions
,”
Phys. Rev. Lett.
82
,
5289
(
1999
).
19.
C.
Von Ferber
,
A.
Jusufi
,
C. N.
Likos
,
H.
Löwen
, and
M.
Watzlawek
, “
Triplet interactions in star polymer solutions
,”
Eur. Phys. J. E
2
,
311
318
(
2000
).
20.
M.
Dijkstra
,
R.
van Roij
,
R.
Roth
, and
A.
Fortini
, “
Effect of many-body interactions on the bulk and interfacial phase behavior of a model colloid-polymer mixture
,”
Phys. Rev. E
73
,
041404
(
2006
).
21.
M.
Dijkstra
,
J. M.
Brader
, and
R.
Evans
, “
Phase behaviour and structure of model colloid-polymer mixtures
,”
J. Phys.: Condens. Matter
11
,
10079
(
1999
).
22.
P.
Schapotschnikow
and
T. J. H.
Vlugt
, “
Understanding interactions between capped nanocrystals: Three-body and chain packing effects
,”
J. Chem. Phys.
131
,
124705
(
2009
).
23.
G.
Bauer
,
N.
Gribova
,
A.
Lange
,
C.
Holm
, and
J.
Gross
, “
Three-body effects in triplets of capped gold nanocrystals
,”
Mol. Phys.
115
,
1031
1040
(
2017
).
24.
F.
Musil
,
A.
Grisafi
,
A. P.
Bartók
,
C.
Ortner
,
G.
Csányi
, and
M.
Ceriotti
, “
Physics-inspired structural representations for molecules and materials
,”
Chem. Rev.
121
,
9759
9815
(
2021
).
25.
E.
Boattini
,
N.
Bezem
,
S. N.
Punnathanam
,
F.
Smallenburg
, and
L.
Filion
, “
Modeling of many-body interactions between elastic spheres through symmetry functions
,”
J. Chem. Phys.
153
,
064902
(
2020
).
26.
G.
Campos-Villalobos
,
E.
Boattini
,
L.
Filion
, and
M.
Dijkstra
, “
Machine learning many-body potentials for colloidal systems
,”
J. Chem. Phys.
155
,
174902
(
2021
).
27.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
28.
M.
Harrington
,
A. J.
Liu
, and
D. J.
Durian
, “
Machine learning characterization of structural defects in amorphous packings of dimers and ellipses
,”
Phys. Rev. E
99
,
022903
(
2019
).
29.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
30.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
31.
A.
Singraber
,
J.
Behler
, and
C.
Dellago
, “
Library-based LAMMPS implementation of high-dimensional neural network potentials
,”
J. Chem. Theory Comput.
15
,
1827
1840
(
2019
).
32.
B. J.
Berne
and
P.
Pechukas
, “
Gaussian model potentials for molecular interactions
,”
J. Chem. Phys.
56
,
4213
4216
(
1972
).
33.

A fast algorithm to calculate dm,ij for two bodies of spherocylindrical symmetry has been described by Vega and Lago.54 

34.
J. G.
Gay
and
B. J.
Berne
, “
Modification of the overlap potential to mimic a linear site–site potential
,”
J. Chem. Phys.
74
,
3316
3319
(
1981
).
35.
P.
Bolhuis
and
D.
Frenkel
, “
Tracing the phase boundaries of hard spherocylinders
,”
J. Chem. Phys.
106
,
666
687
(
1997
).
36.
B.
Martínez-haya
,
L. F.
Rull
,
A.
Cuetos
, and
S.
Lago
, “
Gibbs ensemble simulation of the vapour-liquid equilibrium of square well spherocylinders
,”
Mol. Phys.
99
,
509
516
(
2001
).
37.
G.
Campos-Villalobos
,
M.
Dijkstra
, and
A.
Patti
, “
Nonconventional phases of colloidal nanorods with a soft corona
,”
Phys. Rev. Lett.
126
,
158001
(
2021
).
38.
S.
Asakura
and
F.
Oosawa
, “
Interaction between particles suspended in solutions of macromolecules
,”
J. Polym. Sci.
33
,
183
192
(
1958
).
39.
A.
Vrij
, “
Polymers at interfaces and the interactions in colloidal dispersions
,”
Pure Appl. Chem.
48
,
471
483
(
1976
).
40.
M.
Dijkstra
and
R.
van Roij
, “
Entropic wetting and many-body induced layering in a model colloid-polymer mixture
,”
Phys. Rev. Lett.
89
,
208303
(
2002
).
41.
A. P.
Gast
,
C. K.
Hall
, and
W. B.
Russel
, “
Polymer-induced phase separations in nonaqueous colloidal suspensions
,”
J. Colloid Interface Sci.
96
,
251
267
(
1983
).
42.
S. V.
Savenko
and
M.
Dijkstra
, “
Phase behavior of a suspension of colloidal hard rods and nonadsorbing polymer
,”
J. Chem. Phys.
124
,
234902
(
2006
).
43.
S.
Jungblut
,
R.
Tuinier
,
K.
Binder
, and
T.
Schilling
, “
Depletion induced isotropic-isotropic phase separation in suspensions of rod-like colloids
,”
J. Chem. Phys.
127
,
244909
(
2007
).
44.
B.
Pansu
and
J.-F.
Sadoc
, “
Metallurgy of soft spheres with hard core: From BCC to Frank-Kasper phases
,”
Eur. Phys. J. E
40
,
102
(
2017
).
45.
C.
Vega
,
C.
McBride
, and
L. G.
MacDowell
, “
Liquid crystal phase formation for the linear tangent hard sphere model from Monte Carlo simulations
,”
J. Chem. Phys.
115
,
4203
4211
(
2001
).
46.
D.
Monego
,
T.
Kister
,
N.
Kirkwood
,
P.
Mulvaney
,
A.
Widmer-Cooper
, and
T.
Kraus
, “
Colloidal stability of apolar nanoparticles: Role of ligand length
,”
Langmuir
34
,
12982
12989
(
2018
).
47.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
De Vries
, “
The MARTINI force field: Coarse grained model for biomolecular simulations
,”
J. Phys. Chem. B
111
,
7812
7824
(
2007
).
48.
Z.
Fan
and
M.
Grünwald
, “
Orientational order in self-assembled nanocrystal superlattices
,”
J. Am. Chem. Soc.
141
,
1980
1988
(
2019
).
49.
T.
Kister
,
D.
Monego
,
P.
Mulvaney
,
A.
Widmer-Cooper
, and
T.
Kraus
, “
Colloidal stability of apolar nanoparticles: The role of particle size and ligand shell structure
,”
ACS Nano
12
,
5969
5977
(
2018
).
50.
A.
Widmer-Cooper
and
P.
Geissler
, “
Orientational ordering of passivating ligands on CdS nanorods in solution generates strong rod–rod interactions
,”
Nano Lett.
14
,
57
65
(
2014
).
51.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
 et al., “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
52.
G.
Ciccotti
,
M.
Ferrario
,
J. T.
Hynes
, and
R.
Kapral
, “
Constrained molecular dynamics and the mean potential for an ion pair in a polar solvent
,”
Chem. Phys.
129
,
241
251
(
1989
).
53.
C. K.
Lee
,
C. C.
Hua
, and
S. A.
Chen
, “
An ellipsoid-chain model for conjugated polymer solutions
,”
J. Chem. Phys.
136
,
084901
(
2012
).
54.
C.
Vega
and
S.
Lago
, “
A fast algorithm to evaluate the shortest distance between rods
,”
Computers & Chemistry
18(1)
,
55
59
(
1994
).

Supplementary Material

You do not currently have access to this content.