We investigate the aging behavior in a well-studied model system comprised of a colloidal suspension of thermoreversible adhesive hard spheres (AHS) but thermally quenched below the gel transition to much larger depths than previously studied. The aging behavior in the model AHS system is monitored by small amplitude oscillatory shear rheology measurements conducted while rapidly quenching from the liquid state at 40 °C to a temperature below the gel temperature, and new, anomalous aging behaviors are observed. Shallow quenches lead to monotonic development of the elastic modulus with time, consistent with prior reports for the development of a homogeneous gel [Gordon et al., J. Rheol. 61, 23–34 (2017)]. However, for deeper quenches, a unique and new phenomenon is reported, namely, after an initial rise in the modulus, a reproducible drop in the modulus is observed, followed by a plateau in the modulus value. This drop can be gradual or sudden and the extent of the drop depends on the quench depth. After this drop in the modulus, AHS gel evolves toward a quench-path independent state over the experimental timescale. These effects of the extent of quenching on aging behavior are hypothesized to be a consequence of quenching into different underlying thermodynamic states of colloidal gels and the possible influence of the adhesive glass dynamical arrest for the deepest quenches. The research connects homogeneous gelation with heterogeneous gel formation due to phase separation and shows that the extent of quench can be used as an independent parameter to govern the rheological response of the arrested gel.

1.
M. Y.
Lin
,
H. M.
Lindsay
,
D. A.
Weitz
,
R. C.
Ball
,
R.
Klein
, and
P.
Meakin
,
Nature
339
,
360
362
(
1989
).
2.
L.
Cipelletti
and
L.
Ramos
,
Curr. Opin. Colloid Interface Sci.
7
,
228
234
(
2002
).
3.
N. J.
Wagner
and
J.
Mewis
,
Theory and Applications of Colloidal Suspension Rheology
(
Cambridge University Press
,
2021
).
4.
H.
Guo
,
S.
Ramakrishnan
,
J. L.
Harden
, and
R. L.
Leheny
,
J. Chem. Phys.
135
,
154903
(
2011
).
5.
G.
Petekidis
,
J. Rheol.
58
,
1085
1087
(
2014
).
6.
S.
Jabbari-Farouji
,
G. H.
Wegdam
, and
D.
Bonn
,
Phys. Rev. Lett.
99
,
065701
(
2007
).
7.
C.
Patrick Royall
,
S. R.
Williams
,
T.
Ohtsuka
, and
H.
Tanaka
,
Nat. Mater.
7
,
556
561
(
2008
).
8.
A.
Shahin
and
Y. M.
Joshi
,
Langmuir
28
,
5826
5833
(
2012
).
9.
J.
Mewis
,
N. J.
Wagner
,
J.
Richards
,
N.
Roussel
, and
P.
Scales
, in
Theory and Applications of Colloidal Suspension Rheology
, edited by
N. J.
Wagner
and
J.
Mewis
(
Cambridge University Press
,
Cambridge, UK
,
2021
), pp.
352
406
.
10.
A.
Shahin
and
Y. M.
Joshi
,
Langmuir
26
,
4219
4225
(
2010
).
11.
J.-C.
Baudez
and
P.
Coussot
,
J. Rheol.
45
,
1123
1139
(
2001
).
12.
K. N.
Pham
,
S. U.
Egelhaaf
,
P. N.
Pusey
, and
W. C. K.
Poon
,
Phys. Rev. E
69
,
011503
(
2004
).
13.
K. N.
Pham
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
W. C. K.
Poon
, and
P. N.
Pusey
,
J. Rheol.
52
,
649
676
(
2008
).
14.
Y.
Gao
,
J.
Kim
, and
M. E.
Helgeson
,
Soft Matter
11
,
6360
6370
(
2015
).
15.
L.
Cipelletti
and
L.
Ramos
,
J. Phys.: Condens. Matter
17
,
R253
R285
(
2005
).
16.
Y. M.
Joshi
,
Annu. Rev. Chem. Biomol. Eng.
5
,
181
202
(
2014
).
17.
P.
Sollich
,
F.
Lequeux
,
P.
Hébraud
, and
M. E.
Cates
,
Phys. Rev. Lett.
78
,
2020
2023
(
1997
).
18.
S.
Manley
,
H. M.
Wyss
,
K.
Miyazaki
,
J. C.
Conrad
,
V.
Trappe
,
L. J.
Kaufman
,
D. R.
Reichman
, and
D. A.
Weitz
,
Phys. Rev. Lett.
95
,
238302
(
2005
).
19.
G.
Petekidis
and
N. J.
Wagner
, in
Theory and Applications of Colloidal Suspension Rheology
, edited by
N. J.
Wagner
and
J.
Mewis
(
Cambridge University Press
,
Cambridge, UK
,
2021
), pp.
173
226
.
20.
M. E.
Helgeson
,
Y.
Gao
,
S. E.
Moran
,
J.
Lee
,
M.
Godfrin
,
A.
Tripathi
,
A.
Bose
, and
P. S.
Doyle
,
Soft Matter
10
,
3122
3133
(
2014
).
21.
A. S.
Negi
,
C. G.
Redmon
,
S.
Ramakrishnan
, and
C. O.
Osuji
,
J. Rheol.
58
,
1557
1579
(
2014
).
22.
A. P. R.
Eberle
,
R.
Castañeda-Priego
,
J. M.
Kim
, and
N. J.
Wagner
,
Langmuir
28
,
1866
1878
(
2012
).
23.
S.
Manley
,
B.
Davidovitch
,
N. R.
Davies
,
L.
Cipelletti
,
A. E.
Bailey
,
R. J.
Christianson
,
U.
Gasser
,
V.
Prasad
,
P. N.
Segre
,
M. P.
Doherty
,
S.
Sankaran
,
A. L.
Jankovsky
,
B.
Shiley
,
J.
Bowen
,
J.
Eggers
,
C.
Kurta
,
T.
Lorik
, and
D. A.
Weitz
,
Phys. Rev. Lett.
95
,
048302
(
2005
).
24.
M. B.
Gordon
,
C. J.
Kloxin
, and
N. J.
Wagner
,
J. Rheol.
61
,
23
34
(
2017
).
25.
L. C.
Johnson
,
R. N.
Zia
,
E.
Moghimi
, and
G.
Petekidis
,
J. Rheol.
63
,
583
608
(
2019
).
26.
R. N.
Zia
,
B. J.
Landrum
, and
W. B.
Russel
,
J. Rheol.
58
,
1121
1157
(
2014
).
27.
K. A.
Whitaker
,
Z.
Varga
,
L. C.
Hsiao
,
M. J.
Solomon
,
J. W.
Swan
, and
E. M.
Furst
,
Nat. Commun.
10
,
2237
(
2019
).
28.
N.
Koumakis
,
E.
Moghimi
,
R.
Besseling
,
W. C. K.
Poon
,
J. F.
Brady
, and
G.
Petekidis
,
Soft Matter
11
,
4640
4648
(
2015
).
29.
E.
Moghimi
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
,
Soft Matter
13
,
2371
2383
(
2017
).
30.
M. B.
Gordon
,
C. J.
Kloxin
, and
N. J.
Wagner
,
Soft Matter
17
,
924
935
(
2021
).
31.
X.
Peng
and
G. B.
McKenna
,
Phys. Rev. E
90
,
050301
(
2014
).
32.
N. E.
Valadez-Perez
,
Y.
Liu
,
A. P. R.
Eberle
,
N. J.
Wagner
, and
R.
Castaneda-Priego
,
Phys. Rev. E
88
,
060302(R)
(
2013
).
33.
Y.-L.
Chen
and
K. S.
Schweizer
,
J. Chem. Phys.
120
,
7212
7222
(
2004
).
34.
S. A.
Shah
,
Y.-L.
Chen
,
K. S.
Schweizer
, and
C. F.
Zukoski
,
J. Chem. Phys.
119
,
8747
8760
(
2003
).
35.
H.
Guo
,
S.
Ramakrishnan
,
J. L.
Harden
, and
R. L.
Leheny
,
Phys. Rev. E
81
,
050401
(
2010
).
36.
Y.
Chen
,
S. A.
Rogers
,
S.
Narayanan
,
J. L.
Harden
, and
R. L.
Leheny
,
Phys. Rev. E
102
,
042619
(
2020
).
37.
S.
Ramakrishnan
,
Y. L.
Chen
,
K. S.
Schweizer
, and
C. F.
Zukoski
,
Phys. Rev. E
70
,
040401
(
2004
).
38.
A.
Zaccone
,
H.
Wu
, and
E.
Del Gado
,
Phys. Rev. Lett.
103
,
208301
(
2009
).
39.
J.
Min Kim
,
A. P. R.
Eberle
,
A.
Kate Gurnon
,
L.
Porcar
, and
N. J.
Wagner
,
J. Rheol.
58
,
1301
1328
(
2014
).
40.
A. K.
Van Helden
,
J. W.
Jansen
, and
A.
Vrij
,
J. Colloid Interface Sci.
81
,
354
368
(
1981
).
41.
A. P. R.
Eberle
,
N. J.
Wagner
, and
R.
Castañeda-Priego
,
Phys. Rev. Lett.
106
,
105704
(
2011
).
42.
H.
Verduin
and
J. K. G.
Dhont
,
J. Colloid Interface Sci.
172
,
425
437
(
1995
).
43.
C. J.
Rueb
and
C. F.
Zukoski
,
J. Rheol.
42
,
1451
1476
(
1998
).
44.
M. C.
Grant
and
W. B.
Russel
,
Phys. Rev. E
47
,
2606
2614
(
1993
).
45.
Y.
Lee
,
H. J.
Chung
,
S.
Yeo
,
C.-H.
Ahn
,
H.
Lee
,
P. B.
Messersmith
, and
T. G.
Park
,
Soft Matter
6
,
977
983
(
2010
).
46.
H. H.
Winter
,
Polym. Eng. Sci.
27
,
1698
1702
(
1987
).
47.
H. H.
Winter
and
F.
Chambon
,
J. Rheol.
30
,
367
382
(
1986
).
48.
N.
Joshi
,
K.
Suman
, and
Y. M.
Joshi
,
Macromolecules
53
,
3452
3463
(
2020
).
49.
K.
Suman
and
Y. M.
Joshi
,
Langmuir
34
,
13079
13103
(
2018
).
50.
K.
Suman
and
Y. M.
Joshi
,
J. Rheol.
64
,
863
877
(
2020
).
51.
K.
Suman
,
S.
Sourav
, and
Y. M.
Joshi
,
Phys. Fluids
33
,
073610
(
2021
).
52.
G.
Ovarlez
and
P.
Coussot
,
Phys. Rev. E
76
,
011406
(
2007
).
53.
E. D.
Siggia
,
Phys. Rev. A
20
,
595
605
(
1979
).
54.
S.
Jatav
and
Y. M.
Joshi
,
Langmuir
33
,
2370
2377
(
2017
).
55.
Y. M.
Joshi
and
G.
Petekidis
,
Rheol. Acta
57
,
521
549
(
2018
).
56.
G. J.
Donley
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
,
Proc. Natl. Acad. Sci. U. S. A.
117
,
21945
21952
(
2020
).
57.
K. S.
Schweizer
and
G.
Yatsenko
,
J. Chem. Phys.
127
,
164505
(
2007
).
58.
T.
Gibaud
and
P.
Schurtenberger
,
J. Phys.: Condens. Matter
21
,
322201
(
2009
).
59.
V.
Testard
,
L.
Berthier
, and
W.
Kob
,
Phys. Rev. Lett.
106
,
125702
(
2011
).
60.
R. A. L.
Jones
,
Soft Condensed Matter
(
Oxford University Press
,
2002
), Vol. 6.
61.
T.
Suzuki
and
A. J.
Kovacs
,
Polym. J.
1
,
82
100
(
1970
).
62.
X.
Di
,
K. Z.
Win
,
G. B.
McKenna
,
T.
Narita
,
F.
Lequeux
,
S. R.
Pullela
, and
Z.
Cheng
,
Phys. Rev. Lett.
106
,
095701
(
2011
).

Supplementary Material

You do not currently have access to this content.