Photodissociation is one of the main destruction pathways for dicarbon (C2) in astronomical environments, such as diffuse interstellar clouds, yet the accuracy of modern astrochemical models is limited by a lack of accurate photodissociation cross sections in the vacuum ultraviolet range. C2 features a strong predissociative F1ΠuX1Σg+ electronic transition near 130 nm originally measured in 1969; however, no experimental studies of this transition have been carried out since, and theoretical studies of the F1Πu state are limited. In this work, potential energy curves of excited electronic states of C2 are calculated with the aim of describing the predissociative nature of the F1Πu state and providing new ab initio photodissociation cross sections for astrochemical applications. Accurate electronic calculations of 56 singlet, triplet, and quintet states are carried out at the DW-SA-CASSCF/MRCI+Q level of theory with a CAS(8,12) active space and the aug-cc-pV5Z basis set augmented with additional diffuse functions. Photodissociation cross sections arising from the vibronic ground state to the F1Πu state are calculated by a coupled-channel model. The total integrated cross section through the F1Πuv = 0 and v = 1 bands is 1.198 × 10−13 cm2 cm−1, giving rise to a photodissociation rate of 5.02 × 10−10 s−1 under the standard interstellar radiation field, much larger than the rate in the Leiden photodissociation database. In addition, we report a new 21Σu+ state that should be detectable via a strong 21Σu+X1Σg+ band around 116 nm.

1.
W. H.
Wollaston
,
Philos. Trans. R. Soc. London
92
,
365
(
1802
).
2.
G. B.
Donati
,
Astron. Nachr.
62
,
375
(
1864
).
3.
D. L.
Lambert
and
E. A.
Mallia
,
Bull. Astron. Inst. Czech.
26
,
216
(
1974
).
4.
P.
Sonnentrucker
,
D. E.
Welty
,
J. A.
Thorburn
, and
D. G.
York
,
Astrophys. J., Suppl. Ser.
168
,
58
(
2007
).
5.
N.
Wehres
,
C.
Romanzin
,
H.
Linnartz
,
H.
Van Winckel
, and
A. G. G. M.
Tielens
,
Astron. Astrophys.
518
,
A36
(
2010
).
6.
L. K.
McKemmish
,
A.-M.
Syme
,
J.
Borsovszky
,
S. N.
Yurchenko
,
J.
Tennyson
,
T.
Furtenbacher
, and
A. G.
Császár
,
Mon. Not. R. Astron. Soc.
497
,
1081
(
2020
).
7.
D. L.
Kokkin
,
N. J.
Reilly
,
C. W.
Morris
,
M.
Nakajima
,
K.
Nauta
,
S. H.
Kable
, and
T. W.
Schmidt
,
J. Chem. Phys.
125
,
231101
(
2006
).
8.
O.
Krechkivska
,
G. B.
Bacskay
,
T. P.
Troy
,
K.
Nauta
,
T. D.
Kreuscher
,
S. H.
Kable
, and
T. W.
Schmidt
,
J. Phys. Chem. A
119
,
12102
(
2015
).
9.
O.
Krechkivska
,
B. A.
Welsh
,
G. B.
Bacskay
,
K.
Nauta
,
S. H.
Kable
, and
T. W.
Schmidt
,
J. Chem. Phys.
146
,
134306
(
2017
).
10.
B. A.
Welsh
,
O.
Krechkivska
,
K.
Nauta
,
G. B.
Bacskay
,
S. H.
Kable
, and
T. W.
Schmidt
,
J. Chem. Phys.
147
,
024305
(
2017
).
11.
12.
S.
Shaik
,
D.
Danovich
,
W.
Wu
,
P.
Su
,
H. S.
Rzepa
, and
P. C.
Hiberty
,
Nat. Chem.
4
,
195
(
2012
).
13.
S.
Shaik
,
D.
Danovich
, and
P. C.
Hiberty
,
Comput. Theor. Chem.
1116
,
242
(
2017
).
14.
C.
Amiot
,
J.
Chauville
, and
J.-P.
Maillard
,
J. Mol. Spectrosc.
75
,
19
(
1979
).
15.
J. G.
Phillips
,
Astrophys. J.
107
,
389
(
1948
).
16.
J. A.
Joester
,
M.
Nakajima
,
N. J.
Reilly
,
D. L.
Kokkin
,
K.
Nauta
,
S. H.
Kable
, and
T. W.
Schmidt
,
J. Chem. Phys.
127
,
214303
(
2007
).
17.
E. A.
Ballik
and
D. A.
Ramsay
,
Astrophys. J.
137
,
84
(
1963
).
18.
M.
Douay
,
R.
Nietmann
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
131
,
261
(
1988
).
19.
D.
Shi
,
X.
Zhang
,
J.
Sun
, and
Z.
Zhu
,
Mol. Phys.
109
,
1453
(
2011
).
20.
T. W.
Schmidt
and
G. B.
Bacskay
,
J. Chem. Phys.
127
,
234310
(
2007
).
21.
D. L.
Kokkin
,
G. B.
Bacskay
, and
T. W.
Schmidt
,
J. Chem. Phys.
126
,
084302
(
2007
).
22.
J. F.
Babb
,
R. T.
Smyth
, and
B. M.
McLaughlin
,
Astrophys. J.
876
,
38
(
2019
).
23.
J.
Borsovszky
,
K.
Nauta
,
J.
Jiang
,
C. S.
Hansen
,
L. K.
McKemmish
,
R. W.
Field
,
J. F.
Stanton
,
S. H.
Kable
, and
T. W.
Schmidt
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2113315118
(
2021
).
24.
O. G.
Landsverk
,
Phys. Rev.
56
,
769
(
1939
).
25.
V. M.
Blunt
,
H.
Lin
,
O.
Sorkhabi
, and
W. M.
Jackson
,
J. Mol. Spectrosc.
174
,
274
(
1995
).
26.
O.
Sorkhabi
,
V. M.
Blunt
,
H.
Lin
,
D.
Xu
,
J.
Wrobel
,
R.
Price
, and
W. M.
Jackson
,
J. Chem. Phys.
107
,
9842
(
1997
).
27.
O.
Krechkivska
,
B. A.
Welsh
,
J. N.
Fréreux
,
K.
Nauta
,
S. H.
Kable
, and
T. W.
Schmidt
,
J. Mol. Spectrosc.
344
,
1
(
2018
).
28.
R. C.
Hupe
,
Y.
Sheffer
, and
S. R.
Federman
,
Astrophys. J.
761
,
38
(
2012
).
29.
G. H.
Dieke
and
W.
Lochte-Holtgreven
,
Z. Phys.
62
,
767
(
1930
).
30.
G.
Herzberg
and
R. B.
Sutton
,
Can. J. Res.
18a
,
74
(
1940
).
31.
J. G.
Phillips
,
Astrophys. J.
112
,
131
(
1950
).
32.
G.
Messerle
and
L.
Krauss
,
Z. Naturforsch., A
22
,
2015
(
1967
).
33.
J.
Jiang
,
H.-Z.
Ye
,
K.
Nauta
,
T.
Van Voorhis
,
T. W.
Schmidt
, and
R. W.
Field
,
J. Phys. Chem. A
126
,
3090
(
2022
).
34.
J. G.
Fox
and
G.
Herzberg
,
Phys. Rev.
52
,
638
(
1937
).
35.
J. G.
Phillips
,
Astrophys. J.
110
,
73
(
1949
).
36.
P.
Bornhauser
,
R.
Marquardt
,
C.
Gourlaouen
,
G.
Knopp
,
M.
Beck
,
T.
Gerber
,
J. A.
van Bokhoven
, and
P. P.
Radi
,
J. Chem. Phys.
142
,
094313
(
2015
).
37.
38.
P. M.
Goodwin
and
T. A.
Cool
,
J. Chem. Phys.
89
,
6600
(
1988
).
39.
P. M.
Goodwin
and
T. A.
Cool
,
J. Mol. Spectrosc.
133
,
230
(
1989
).
40.
S. P.
Souza
and
B. L.
Lutz
,
Astrophys. J.
216
,
L49
(
1977
).
41.
T. P.
Snow
, Jr.
,
Astrophys. J.
220
,
L93
(
1978
).
42.
D. L.
Lambert
,
Y.
Sheffer
, and
S. R.
Federman
,
Astrophys. J.
438
,
740
(
1995
).
43.
T. P.
Snow
and
B. J.
McCall
,
Annu. Rev. Astron. Astrophys.
44
,
367
(
2006
).
44.
S. R.
Federman
and
W. T.
Huntress
, Jr.
,
Astrophys. J.
338
,
140
(
1989
).
45.
G.
Herzberg
,
A.
Lagerqvist
, and
C.
Malmberg
,
Can. J. Phys.
47
,
2735
(
1969
).
46.
G.
Kaczmarczyk
,
Acta Astron.
50
,
151
(
2000
).
47.
P. J.
Bruna
and
F.
Grein
,
Can. J. Phys.
79
,
653
(
2001
).
48.
A. N.
Heays
,
A. D.
Bosman
, and
E. F.
van Dishoeck
,
Astron. Astrophys.
602
,
A105
(
2017
).
49.
B.
Pouilly
,
J. M.
Robbe
,
J.
Schamps
, and
E.
Roueff
,
J. Phys. B: At. Mol. Phys.
16
,
437
(
1983
).
50.
Z.
Xu
,
N.
Luo
,
S. R.
Federman
,
W. M.
Jackson
,
C.-Y.
Ng
,
L.-P.
Wang
, and
K. N.
Crabtree
,
Astrophys. J.
882
,
86
(
2019
).
51.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
52.
H.-J.
Werner
and
P. J.
Knowles
, molpro Users Manual,
2015
.
53.
H. J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
).
54.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
55.
H. J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
56.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
57.
P. J.
Knowles
and
H.-J.
Werner
,
Theor. Chim. Acta
84
,
95
(
1992
).
58.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
59.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
60.
M. P.
Deskevich
,
D. J.
Nesbitt
, and
H.-J.
Werner
,
J. Chem. Phys.
120
,
7281
(
2004
).
61.
R.
Dawes
,
A. W.
Jasper
,
C.
Tao
,
C.
Richmond
,
C.
Mukarakate
,
S. H.
Kable
, and
S. A.
Reid
,
J. Phys. Chem. Lett.
1
,
641
(
2010
).
62.
K.
Samanta
,
J. M.
Beames
,
M. I.
Lester
, and
J. E.
Subotnik
,
J. Chem. Phys.
141
,
134303
(
2014
).
63.
S. N.
Yurchenko
,
L.
Lodi
,
J.
Tennyson
, and
A. V.
Stolyarov
,
Comput. Phys. Commun.
202
,
262
(
2016
).
65.
E. F.
van Dishoeck
,
M. C.
van Hemert
,
A. C.
Allison
, and
A.
Dalgarno
,
J. Chem. Phys.
81
,
5709
(
1984
).
66.
A.
Heays
, “
Photoabsorption and photodissociation in molecular nitrogen
,” Ph.D. thesis,
Australian National University
,
2010
.
67.
S. T.
Gibson
and
B. R.
Lewis
,
J. Electron Spectrosc. Relat. Phenom.
80
,
9
(
1996
), part of Special Issue: Proceedings of the 11th International Conference on Vacuum Ultraviolet Radiation Physics.
68.
B. R.
Lewis
,
S. T.
Gibson
,
F. T.
Hawes
, and
L. W.
Torop
,
Phys. Chem. Earth, Part C
26
,
519
(
2001
).
69.
A. N.
Heays
,
B. R.
Lewis
,
S. T.
Gibson
,
G.
Stark
, and
N.
de Oliveira
,
EPJ Web Conf.
84
,
03004
(
2015
).
70.
B. R.
Lewis
,
S. T.
Gibson
,
G.
Stark
, and
A. N.
Heays
,
J. Chem. Phys.
148
,
244303
(
2018
).
71.
S.
Gibson
, PyDiatomic: PyDiatomic Initial Release,
2016
.
72.
B. T.
Draine
,
Astrophys. J., Suppl. Ser.
36
,
595
(
1978
).
73.
W.
Chen
,
K.
Kawaguchi
,
P. F.
Bernath
, and
J.
Tang
,
J. Chem. Phys.
142
,
064317
(
2015
).
74.
W.
Chen
,
K.
Kawaguchi
,
P. F.
Bernath
, and
J.
Tang
,
J. Chem. Phys.
144
,
064301
(
2016
).
75.
W. H.
Smith
,
Astrophys. J.
156
,
791
(
1969
).
76.
M.
Nakajima
,
J. A.
Joester
,
N. I.
Page
,
N. J.
Reilly
,
G. B.
Bacskay
,
T. W.
Schmidt
, and
S. H.
Kable
,
J. Chem. Phys.
131
,
044301
(
2009
).
77.
H.
Nakamura
,
Nonadiabatic Transition: Concepts, Basic Theories and Applications
(
World Scientific
,
River Edge, NJ
,
2002
).
78.
Y.
Sheffer
,
M.
Rogers
,
S. R.
Federman
,
D. L.
Lambert
, and
R.
Gredel
,
Astrophys. J.
667
,
1002
(
2007
).

Supplementary Material

You do not currently have access to this content.