Adding carbon nanoparticles into organic phase change materials (PCMs) such as paraffin is a common way to enhance their thermal conductivity and to improve the efficiency of heat storage devices. However, the sedimentation stability of such blends can be low due to aggregation of aromatic carbon nanoparticles in the aliphatic paraffin environment. In this paper, we explore whether this important issue can be resolved by the introduction of a polymer agent such as poly(3-hexylthiophene) (P3HT) into the paraffin–nanoparticle blends: P3HT could ensure the compatibility of aromatic carbon nanoparticles with aliphatic paraffin chains. We employed a combination of experimental and computational approaches to determine the impact of P3HT addition on the properties of organic PCMs composed of paraffin and carbon nanoparticles (asphaltenes). Our findings clearly show an increase in the sedimentation stability of paraffin–asphaltene blends, when P3HT is added, through a decrease in average size of asphaltene aggregates as well as in an increase of the blends’ viscosity. We also witness the appearance of the yield strength and gel-like behavior of the mixtures. At the same time, the presence of P3HT in the blends has almost no effect on their thermophysical properties. This implies that all properties of the blends, which are critical for heat storage applications, are well preserved. Thus, we demonstrated that adding polyalkylthiophenes to paraffin–asphaltene mixtures led to significant improvement in the performance characteristics of these systems. Therefore, the polymer additives can serve as promising compatibilizers for organic PCMs composed of paraffins and asphaltenes and other types of carbon nanoparticles.

1.
H.
Nazir
,
M.
Batool
,
F. J.
Bolivar Osorio
,
M.
Isaza-Ruiz
,
X.
Xu
,
K.
Vignarooban
,
P.
Phelan
,
Inamuddin
, and
A. M.
Kannan
,
Int. J. Heat Mass Transfer
129
,
491
(
2019
).
2.
Z. A.
Qureshi
,
H. M.
Ali
, and
S.
Khushnood
,
Int. J. Heat Mass Transfer
127
,
838
(
2018
).
3.
Y.
Lin
,
Y.
Jia
,
G.
Alva
, and
G.
Fang
,
Renewable Sustainable Energy Rev.
82
,
2730
(
2018
).
4.
V. V.
Makarova
,
S. N.
Gorbacheva
,
S. V.
Antonov
, and
S. O.
Ilyin
,
Russ. J. Appl. Chem.
93
,
1796
(
2020
).
5.
B.
Zalba
,
J. M.
Marín
,
L. F.
Cabeza
, and
H.
Mehling
,
Appl. Therm. Eng.
23
,
251
(
2003
).
6.
I.
Sarbu
and
C.
Sebarchievici
,
Sustainability
10
,
191
(
2018
).
7.
K.
Pielichowska
and
K.
Pielichowski
,
Prog. Mater. Sci.
65
,
67
(
2014
).
8.
A.
Sharma
,
V. V.
Tyagi
,
C. R.
Chen
, and
D.
Buddhi
,
Renewable Sustainable Energy Rev.
13
,
318
(
2009
).
9.
S.
Himran
,
A.
Suwono
, and
G. A.
Mansoori
,
Energy Sources
16
,
117
(
1994
).
10.
S.
Gschwander
,
S.
Niedermaier
,
S.
Gamisch
,
M.
Kick
,
F.
Klünder
, and
T.
Haussmann
,
Appl. Sci.
11
,
3612
(
2021
).
11.
A.
Abhat
,
S.
Aboul-Enein
, and
N. A.
Malatidis
,
Thermal Storage of Solar Energy
(
Springer Netherlands
,
Dordrecht
,
1981
), pp.
157
171
.
12.
Y.
Cui
,
C.
Liu
,
S.
Hu
, and
X.
Yu
,
Sol. Energy Mater. Sol. Cells
95
,
1208
(
2011
).
13.
A.
Karaipekli
,
A.
Biçer
,
A.
Sarı
, and
V. V.
Tyagi
,
Energy Convers. Manage.
134
,
373
(
2017
).
15.
M.
Amin
,
N.
Putra
,
E. A.
Kosasih
,
E.
Prawiro
,
R. A.
Luanto
, and
T. M. I.
Mahlia
,
Appl. Therm. Eng.
112
,
273
(
2017
).
16.
X.
Liu
and
Z.
Rao
,
Thermochim. Acta
647
,
15
(
2017
).
17.
P.
Goli
,
S.
Legedza
,
A.
Dhar
,
R.
Salgado
,
J.
Renteria
, and
A. A.
Balandin
,
J. Power Sources
248
,
37
(
2014
).
19.
S.
Srinivasan
,
M. S.
Diallo
,
S. K.
Saha
,
O. A.
Abass
,
A.
Sharma
, and
G.
Balasubramanian
,
Int. J. Heat Mass Transfer
114
,
318
(
2017
).
20.
A.
Ohayon-Lavi
,
A.
Lavi
,
A.
Alatawna
,
E.
Ruse
,
G.
Ziskind
, and
O.
Regev
,
Renewable Energy
167
,
580
(
2021
).
21.
Y.
Zhao
,
L.
Jin
,
B.
Zou
,
G.
Qiao
,
T.
Zhang
,
L.
Cong
,
F.
Jiang
,
C.
Li
,
Y.
Huang
, and
Y.
Ding
,
Appl. Therm. Eng.
171
,
115015
(
2020
).
22.
V. V.
Makarova
,
S. N.
Gorbacheva
,
A. V.
Kostyuk
,
S. V.
Antonov
,
Y. Y.
Borisova
,
D. N.
Borisov
, and
M. R.
Yakubov
,
J. Energy Storage
47
,
103595
(
2022
).
23.
A. D.
Glova
,
V. M.
Nazarychev
,
S. V.
Larin
,
A. V.
Lyulin
,
S. V.
Lyulin
, and
A. A.
Gurtovenko
,
J. Mol. Liq.
346
,
117112
(
2022
).
24.
H.
Zhang
,
T.
Shi
, and
A.
Ma
,
Polymers
13
,
2797
(
2021
).
25.
H.
Zheng
,
K.
Wu
,
W.
Chen
,
B.
Nan
,
Z.
Qu
, and
M.
Lu
,
Macromol. Chem. Phys.
222
,
2000418
(
2021
).
26.
U.
Mehmood
,
A.
Al-Ahmed
, and
I. A.
Hussein
,
Renewable Sustainable Energy Rev.
57
,
550
(
2016
).
27.
A. R.
Murad
,
A.
Iraqi
,
S. B.
Aziz
,
S. N.
Abdullah
, and
M. A.
Brza
,
Polymers
12
,
2627
(
2020
).
28.
S.
Günes
,
H.
Neugebauer
, and
N. S.
Sariciftci
,
Chem. Rev.
107
,
1324
(
2007
).
29.
B.
Mei
,
Y.
Qin
, and
S.
Agbolaghi
,
Solar Energy
215
,
77
(
2021
).
30.
J. A.
Hauch
,
P.
Schilinsky
,
S. A.
Choulis
,
R.
Childers
,
M.
Biele
, and
C. J.
Brabec
,
Sol. Energy Mater. Sol. Cells
92
,
727
(
2008
).
31.
U. K.
Bhui
,
A.
Ray
, and
M. P.
Joshi
,
Macromolecular Characterization of Hydrocarbons for Sustainable Future
(
Springer Singapore
,
2021
), pp.
129
139
.
32.
N. I.
Borzdun
,
R. R.
Ramazanov
,
A. D.
Glova
,
S. V.
Larin
, and
S. V.
Lyulin
,
Energy Fuels
35
,
8423
(
2021
).
33.
S.
Peng
,
A.
Fuchs
, and
R. A.
Wirtz
,
J. Appl. Polym. Sci.
93
,
1240
(
2004
).
34.
O. C.
Mullins
,
Annu. Rev. Anal. Chem.
4
,
393
(
2011
).
35.
M.
Kamkar
and
G.
Natale
,
Fuel
285
,
119272
(
2021
).
36.
E. M.
Deemer
and
R. R.
Chianelli
,
Modified Asphalt
(
InTech
,
2018
).
37.
R. E.
Abujnah
,
H.
Sharif
,
B.
Torres
,
K.
Castillo
,
V.
Gupta
, and
R. R.
Chaielli
,
J. Environ. Anal. Toxicol.
06
,
1000345
(
2016
).
38.
39.
A. Y.
Malkin
and
A. E.
Chalykh
,
Diffusion and Viscosity of Polymers: Measurement Techniques
(
Khimia
,
Moscow
,
1979
).
40.
V.
Makarova
and
V.
Kulichikhin
,
Interferometry—Research and Applications in Science and Technology
(
InTech
,
2012
).
41.
S. N.
Gorbacheva
,
V. V.
Makarova
, and
S. O.
Ilyin
,
J. Energy Storage
36
,
102417
(
2021
).
42.
J.
Paris
,
M.
Falardeau
, and
C.
Villeneuve
,
Energy Sources
15
,
85
(
1993
).
43.
A. D.
Glova
,
I. V.
Volgin
,
V. M.
Nazarychev
,
S. V.
Larin
,
S. V.
Lyulin
, and
A. A.
Gurtovenko
,
RSC Adv.
9
,
38834
(
2019
).
44.
V. M.
Nazarychev
,
A. D.
Glova
,
I. V.
Volgin
,
S. V.
Larin
,
A. V.
Lyulin
,
S. V.
Lyulin
, and
A. A.
Gurtovenko
,
Int. J. Heat Mass Transfer
165
,
120639
(
2021
).
45.
I. V.
Volgin
,
A. D.
Glova
,
V. M.
Nazarychev
,
S. V.
Larin
,
S. V.
Lyulin
, and
A. A.
Gurtovenko
,
RSC Adv.
10
,
31316
(
2020
).
46.
T.
Liu
,
D. L.
Cheung
, and
A.
Troisi
,
Phys. Chem. Chem. Phys.
13
,
21461
(
2011
).
47.
M.
Bernardi
,
M.
Giulianini
, and
J. C.
Grossman
,
ACS Nano
4
,
6599
(
2010
).
48.
Y. Y.
Yimer
and
M.
Tsige
,
J. Chem. Phys.
137
,
204701
(
2012
).
49.
N. I.
Borzdun
,
S. V.
Larin
,
S. G.
Falkovich
,
V. M.
Nazarychev
,
I. V.
Volgin
,
A. V.
Yakimansky
,
A. V.
Lyulin
,
V.
Negi
,
P. A.
Bobbert
, and
S. V.
Lyulin
,
J. Polym. Sci., Part B: Polym. Phys.
54
,
2448
(
2016
).
50.
B.
Schuler
,
G.
Meyer
,
D.
Peña
,
O. C.
Mullins
, and
L.
Gross
,
J. Am. Chem. Soc.
137
,
9870
(
2015
).
51.
S. V.
Lyulin
,
A. D.
Glova
,
S. G.
Falkovich
,
V. A.
Ivanov
,
V. M.
Nazarychev
,
A. V.
Lyulin
,
S. V.
Larin
,
S. v.
Antonov
,
P.
Ganan
, and
J. M.
Kenny
,
Pet. Chem.
58
,
983
(
2018
).
52.
E. S.
Boek
,
D. S.
Yakovlev
, and
T. F.
Headen
,
Energy Fuels
23
,
1209
(
2009
).
53.
D. D.
Li
and
M. L.
Greenfield
,
Fuel
115
,
347
(
2014
).
54.
T. F.
Headen
,
E. S.
Boek
, and
N. T.
Skipper
,
Energy Fuels
23
,
1220
(
2009
).
55.
T. F.
Headen
,
E. S.
Boek
,
G.
Jackson
,
T. S.
Totton
, and
E. A.
Müller
,
Energy Fuels
31
,
1108
(
2017
).
56.
A. D.
Glova
,
S. V.
Larin
,
V. M.
Nazarychev
,
J. M.
Kenny
,
A. V.
Lyulin
, and
S. V.
Lyulin
,
ACS Omega
4
,
20005
(
2019
).
57.
M. B.
Singh
,
N.
Rampal
, and
A.
Malani
,
Energy Fuels
32
,
8259
(
2018
).
58.
Z.
Dong
,
Z.
Liu
,
P.
Wang
, and
X.
Gong
,
Fuel
189
,
155
(
2017
).
59.
M.
Xu
,
J.
Yi
,
P.
Qi
,
H.
Wang
,
M.
Marasteanu
, and
D.
Feng
,
Energy Fuels
33
,
3187
(
2019
).
60.
T.
Emrick
and
E.
Pentzer
,
NPG Asia Mater.
5
,
e43
(
2013
).
61.
G.
Kiršanskas
,
Q.
Li
,
K.
Flensberg
,
G. C.
Solomon
, and
M.
Leijnse
,
Appl. Phys. Lett.
105
,
233102
(
2014
).
62.
O. C.
Mullins
,
H.
Sabbah
,
J.
Eyssautier
,
A. E.
Pomerantz
,
L.
Barré
,
A. B.
Andrews
,
Y.
Ruiz-Morales
,
F.
Mostowfi
,
R.
McFarlane
,
L.
Goual
,
R.
Lepkowicz
,
T.
Cooper
,
J.
Orbulescu
,
R. M.
Leblanc
,
J.
Edwards
, and
R. N.
Zare
,
Energy Fuels
26
,
3986
(
2012
).
63.
R.
Dutta Majumdar
,
T.
Montina
,
O. C.
Mullins
,
M.
Gerken
, and
P.
Hazendonk
,
Fuel
193
,
359
(
2017
).
64.
J. A.
Duran
,
Y. A.
Casas
,
L.
Xiang
,
L.
Zhang
,
H.
Zeng
, and
H. W.
Yarranton
,
Energy Fuels
33
,
3694
(
2019
).
65.
H.
Bian
,
F.
Xu
,
A.
Kan
,
S.
Wei
,
H.
Zhang
,
S.
Zhang
,
L.
Zhu
, and
D.
Xia
,
J. Mol. Liq.
343
,
117576
(
2021
).
66.
A. H.
Alshareef
,
K.
Azyat
,
R. R.
Tykwinski
, and
M. R.
Gray
,
Energy Fuels
24
,
3998
(
2010
).
67.
H. M. S.
Lababidi
,
H. M.
Sabti
, and
F. S.
AlHumaidan
,
Fuel
117
,
59
(
2014
).
68.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1–2
,
19
(
2015
).
69.
S.
Páll
,
A.
Zhmurov
,
P.
Bauer
,
M.
Abraham
,
M.
Lundborg
,
A.
Gray
,
B.
Hess
, and
E.
Lindahl
,
J. Chem. Phys.
153
,
134110
(
2020
).
70.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
71.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
,
J. Comput. Chem.
25
,
1157
(
2004
).
72.
P.
Venkataraman
,
K.
Zygourakis
,
W. G.
Chapman
,
S. L.
Wellington
, and
M.
Shammai
,
Energy Fuels
31
,
1182
(
2017
).
73.
J.
Xu
,
N.
Wang
,
S.
Xue
,
H.
Zhang
,
J.
Zhang
,
S.
Xia
, and
Y.
Han
,
Fuel
310
,
122270
(
2022
).
74.
S.
Obata
and
Y.
Shimoi
,
Phys. Chem. Chem. Phys.
15
,
9265
(
2013
).
75.
C.
Trapalis
,
E.
Lidorikis
, and
D. G.
Papageorgiou
,
Comput. Theor. Chem.
1190
,
112997
(
2020
).
76.
Q.-Q.
Pan
,
Z.-W.
Zhao
,
Y.
Wu
,
Y.
Geng
,
M.
Zhang
, and
Z.-M.
Su
,
J. Taiwan Inst. Chem. Eng.
100
,
160
(
2019
).
77.
R. C.
Pani
,
B. D.
Bond
,
G.
Krishnan
, and
Y. G.
Yingling
,
Soft Matter
9
,
10048
(
2013
).
78.
Q.-Q.
Pan
,
Z.-W.
Zhao
,
Y.
Wu
, and
Y.
Geng
,
J. Mol. Graphics Modell.
94
,
107488
(
2020
).
79.
A. W.
Sousa da Silva
and
W. F.
Vranken
,
BMC Res. Notes
5
,
367
(
2012
).
80.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
,
J. Mol. Graphics Modell.
25
,
247
(
2006
).
81.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
83.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
84.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
85.
B.
Hess
,
J. Chem. Theory Comput.
4
,
116
(
2008
).
86.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
87.
V.
Nazarychev
,
A.
Glova
,
S.
Larin
,
A.
Lyulin
,
S.
Lyulin
, and
A.
Gurtovenko
, chemRxiv:2022-jcxmz (
2022
).
88.
J.
Ramos
,
J. F.
Vega
, and
J.
Martínez-Salazar
,
Macromolecules
48
,
5016
(
2015
).
89.
T.
Zhang
and
T.
Luo
,
J. Phys. Chem. B
120
,
803
(
2016
).
90.
M. S.
Green
,
J. Chem. Phys.
22
,
398
(
1954
).
91.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
).
92.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
93.
D.
Surblys
,
H.
Matsubara
,
G.
Kikugawa
, and
T.
Ohara
,
Phys. Rev. E
99
,
051301
(
2019
).
94.
I.
Krupa
,
G.
Miková
, and
A. S.
Luyt
,
Eur. Polym. J.
43
,
4695
(
2007
).
95.
J. E. K.
Schawe
,
J. Appl. Polym. Sci.
133
,
42977
(
2016
).
96.
I. S.
Kolesov
,
R.
Androsch
, and
H.-J.
Radusch
,
J. Therm. Anal. Calorim.
78
,
885
(
2004
).
97.
V. S.
Balderrama
,
M.
Estrada
,
A.
Viterisi
,
P.
Formentin
,
J.
Pallarés
,
J.
Ferré-Borrull
,
E.
Palomares
, and
L. F.
Marsal
,
Microelectron. Reliab.
53
,
560
(
2013
).
98.
F.
Rossetti
,
G.
Ranalli
, and
C.
Faccenna
,
J. Struct. Geol.
21
,
413
(
1999
).
99.
Y.
Xu
,
A. D.
Atrens
, and
J. R.
Stokes
,
Soft Matter
14
,
1953
(
2018
).
100.
S. N.
Gorbacheva
,
Y. M.
Yarmush
, and
S. O.
Ilyin
,
Tribol. Int.
148
,
106318
(
2020
).
101.
S.
Ikeda
and
K.
Nishinari
,
J. Agric. Food Chem.
49
,
4436
(
2001
).
102.
I. S.
Chronakis
,
L.
Piculell
, and
J.
Borgström
,
Carbohydr. Polym.
31
,
215
(
1996
).
103.
S. B.
Ross-Murphy
,
V. J.
Morris
, and
E. R.
Morris
,
Faraday Symp. Chem. Soc.
18
,
115
(
1983
).

Supplementary Material

You do not currently have access to this content.