Modeling the non-equilibrium dissipative dynamics of strongly interacting quantized degrees of freedom is a fundamental problem in several branches of physics and chemistry. We implement a quantum state trajectory scheme for solving Lindblad quantum master equations that describe coherent and dissipative processes for a set of strongly coupled quantized oscillators. The scheme involves a sequence of stochastic quantum jumps with transition probabilities determined by the system state and the system-reservoir dynamics. Between consecutive jumps, the wave function is propagated in a coordinate space using the multi-configuration time-dependent Hartree method. We compare this hybrid propagation methodology with exact Liouville space solutions for physical systems of interest in cavity quantum electrodynamics, demonstrating accurate results for experimentally relevant observables using a tractable number of quantum trajectories. We show the potential for solving the dissipative dynamics of finite size arrays of strongly interacting quantized oscillators with high excitation densities, a scenario that is challenging for conventional density matrix propagators due to the large dimensionality of the underlying Hilbert space.

1.
C. P.
Koch
,
J. Phys.: Condens. Matter
28
,
213001
(
2016
).
2.
S.
Deffner
and
E.
Lutz
,
Phys. Rev. Lett.
111
,
010402
(
2013
).
3.
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
109
,
233601
(
2012
).
4.
J. F.
Haase
,
A.
Smirne
,
S. F.
Huelga
,
J.
Kołodynski
, and
R.
Demkowicz-Dobrzanski
,
Quantum Meas. Quantum Metrol.
5
,
13
(
2016
).
5.
A.
Di Paolo
,
T. E.
Baker
,
A.
Foley
,
D.
Sénéchal
, and
A.
Blais
,
npj Quantum Inf.
7
,
11
(
2021
).
6.
M. S.
Tame
,
K. R.
McEnery
,
Ş. K.
Özdemir
,
J.
Lee
,
S. A.
Maier
, and
M. S.
Kim
,
Nat. Phys.
9
,
329
(
2013
).
7.
M. K.
Schmidt
,
R.
Esteban
,
A.
González-Tudela
,
G.
Giedke
, and
J.
Aizpurua
,
ACS Nano
10
,
6291
(
2016
).
8.
F.
Herrera
and
F. C.
Spano
,
Phys. Rev. Lett.
116
,
238301
(
2016
).
9.
F.
Herrera
and
J.
Owrutsky
,
J. Chem. Phys.
152
,
100902
(
2020
).
10.
H.
Breuer
,
P.
Breuer
,
F.
Petruccione
, and
S.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
2002
).
11.
12.
H.
Weimer
,
A.
Kshetrimayum
, and
R.
Orús
,
Rev. Mod. Phys.
93
,
015008
(
2021
).
13.
N.
Gisin
and
I. C.
Percival
,
J. Phys. A: Math. Gen.
25
,
5677
(
1992
).
14.
J.
Dalibard
,
Y.
Castin
, and
K.
Mølmer
,
Phys. Rev. Lett
68
,
580
(
1992
);
[PubMed]
Y.
Castin
and
J.
Dalibard
,
J. Opt. Soc. Am. B
524
,
10
(
1993
).
15.
E. R.
Koessler
,
A.
Mandal
, and
P.
Huo
,
J. Chem. Phys.
157
,
064101
(
2022
).
16.
F.
Verstraete
,
J. J.
García-Ripoll
, and
J. I.
Cirac
,
Phys. Rev. Lett.
93
,
207204
(
2004
).
17.
A. H.
Werner
,
D.
Jaschke
,
P.
Silvi
,
M.
Kliesch
,
T.
Calarco
,
J.
Eisert
, and
S.
Montangero
,
Phys. Rev. Lett.
116
,
237201
(
2016
).
19.
I.
Carusotto
and
C.
Ciuti
,
Phys. Rev. B
72
,
125335
(
2005
).
20.
P.
Navez
and
R.
Schützhold
,
Phys. Rev. A
82
,
063603
(
2010
).
21.
J.
Schachenmayer
,
A.
Pikovski
, and
A. M.
Rey
,
Phys. Rev. X
5
,
011022
(
2015
).
23.
J.
Cao
and
B. J.
Berne
,
J. Chem. Phys.
92
,
7531
(
1990
).
24.
Y.
Tanimura
,
J. Chem. Phys.
153
,
020901
(
2020
).
25.
B.
Tang
,
E.
Khatami
, and
M.
Rigol
,
Comput. Phys. Commun.
184
,
557
(
2013
).
26.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5093
(
1994
).
27.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
28.
L. M.
Sieberer
,
M.
Buchhold
, and
S.
Diehl
,
Rep. Prog. Phys.
79
,
096001
(
2016
).
29.
S.
Valleau
,
S. K.
Saikin
,
M.-H.
Yung
, and
A. A.
Guzik
,
J. Chem. Phys.
137
,
034109
(
2012
).
30.
J. M.
Moix
and
J.
Cao
,
J. Chem. Phys.
139
,
134106
(
2013
).
31.
J.
del Pino
,
F. A. Y. N.
Schröder
,
A. W.
Chin
,
J.
Feist
, and
F. J.
Garcia-Vidal
,
Phys. Rev. Lett.
121
,
227401
(
2018
).
32.
Y.-S.
Wang
,
P.
Nijjar
,
X.
Zhou
,
D. I.
Bondar
, and
O. V.
Prezhdo
,
J. Phys. Chem. B
124
,
4326
(
2020
).
33.
F. J.
Garcia-Vidal
,
C.
Ciuti
, and
T. W.
Ebbesen
,
Science
373
,
eabd0336
(
2021
).
34.
J.
Feist
,
J.
Galego
, and
F. J.
Garcia-Vidal
,
ACS Photonics
5
,
205
(
2018
).
35.
B. S.
Simpkins
,
A. D.
Dunkelberger
, and
J. C.
Owrutsky
,
J. Phys. Chem. C
125
,
19081
(
2021
).
36.
J.
Fregoni
,
G.
Granucci
,
M.
Persico
, and
S.
Corni
,
Chem
6
,
250
(
2020
).
37.
S.
Felicetti
,
J.
Fregoni
,
T.
Schnappinger
,
S.
Reiter
,
R.
de Vivie-Riedle
, and
J.
Feist
,
J. Phys. Chem. Lett.
11
,
8810
(
2020
).
38.
J.
Fregoni
,
S.
Corni
,
M.
Persico
, and
G.
Granucci
,
J. Comput. Chem.
41
,
2033
(
2020
).
39.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
,
Nat. Commun.
10
,
4685
(
2019
).
40.
P.
Antoniou
,
F.
Suchanek
,
J. F.
Varner
, and
J. J.
Foley
,
J. Phys. Chem. Lett.
11
,
9063
(
2020
).
41.
M.
Du
,
L. A.
Martínez-Martínez
,
R. F.
Ribeiro
,
Z.
Hu
,
V. M.
Menon
, and
J.
Yuen-Zhou
,
Chem. Sci.
9
,
6659
(
2018
).
42.
I. S.
Ulusoy
and
O.
Vendrell
,
J. Chem. Phys.
153
,
044108
(
2020
).
43.
B.
Gu
and
S.
Mukamel
,
Chem. Sci.
11
,
1290
(
2020
).
44.
W.
Ahn
,
F.
Herrera
, and
B.
Simpkins
, “
Modification of urethane addition reaction via vibrational strong coupling,
” ChemRxiv: (
2022
), https://doi.org/10.26434/chemrxiv-2022-wb6vs.
45.
M. B.
Plenio
and
P. L.
Knight
,
Rev. Mod. Phys.
70
,
101
(
1998
).
46.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
73
(
1990
);
M.
Beck
,
A.
Jackle
,
G.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
47.
G.
Worth
,
M.
Beck
,
A.
Jäckle
, and
H.
Meyer
, The MCTDH Package, version 8.4, http://mctdh.uni-hd.de,
2007
).
48.
I.
de Vega
and
D.
Alonso
,
Rev. Mod. Phys.
89
,
015001
(
2017
).
49.
J.
Piilo
,
K.
Härkönen
,
S.
Maniscalco
, and
K.-A.
Suominen
,
Phys. Rev. A
79
,
062112
(
2009
).
50.
D. L.
Andrews
,
G. A.
Jones
,
A.
Salam
, and
R. G.
Woolley
,
J. Chem. Phys.
148
,
040901
(
2018
).
51.
M. A. D.
Taylor
,
A.
Mandal
,
W.
Zhou
, and
P.
Huo
,
Phys. Rev. Lett.
125
,
123602
(
2020
).
52.
A.
Raab
and
H.-D.
Meyer
,
Theor. Chem. Acc.
104
,
358
(
2000
).
53.
M.
Nest
and
H.-D.
Meyer
,
J. Chem. Phys.
119
,
24
(
2003
).
54.
I.
Andrianov
and
P.
Saalfrank
,
J. Chem. Phys.
124
,
034710
(
2006
).
55.
O.
Vendrell
and
H.-D.
Meyer
,
J. Chem. Phys.
134
,
044135
(
2011
).
56.
O.
Vendrell
,
Chem. Phys.
509
,
55
(
2018
), high-dimensional quantum dynamics (on the occasion of the 70th birthday of Hans-Dieter Meyer).
57.
C. L.
Cortes
,
M.
Otten
, and
S. K.
Gray
,
J. Chem. Phys.
152
,
084105
(
2020
).
58.
S.
Mandal
,
F.
Gatti
,
O.
Bindech
,
R.
Marquardt
, and
J.-C.
Tremblay
,
J. Chem. Phys.
156
,
094109
(
2022
).
59.
S.
Mandal
,
F.
Gatti
,
O.
Bindech
,
R.
Marquardt
, and
J. C.
Tremblay
,
J. Chem. Phys.
157
,
144105
(
2022
).
60.

During peer review, we became aware of Refs. 58 and 59 with an equivalent implementation of the Monte Carlo MCTDH scheme developed in this work, but applied to the coupled dynamics of the internal stretch and the surface–molecule distance in the O2/Pt(111) system coupled to a Markovian bath of electron–hole-pairs.

61.
H.
Carmichael
, Statistical Methods in Quantum Optics 1: Master Equations and Fokker–Planck Equations (Springer Berlin/Heidelberg, 1999); Statistical Methods in Quantum Optics 2: Non-classical Fields (Springer Berlin/Heidelberg, 2008).
63.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
).
64.
H.
Meyer
,
F.
Gatti
, and
G.
Worth
,
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
(
John Wiley & Sons
,
2009
).
65.
J.
Light
and
T.
Carrington
,
Adv. Chem. Phys.
114
,
263
(
2000
).
66.
H.
Meyer
, “
Introduction to MCTDH: Lecture notes
,” https://www.pci.uni-heidelberg.de/cms/mctdh.html (
2011
).
67.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
,
Comput. Phys. Commun.
183
,
1760
(
2012
).
68.
J. F.
Triana
,
D.
Peláez
, and
J. L.
Sanz-Vicario
,
J. Phys. Chem. A
122
,
2266
(
2018
).
69.
B.
Zhu
,
A. M.
Rey
, and
J.
Schachenmayer
,
New J. Phys.
21
,
082001
(
2019
).
70.
E. T.
Jaynes
and
F. W.
Cummings
, in
Proceedings of the IEEE
(
IEEE
,
1963
), Vol. 51, p.
89
.
71.
C.
Gerry
and
P.
Knight
,
Introductory Quantum Optics
(
Cambridge University Press
,
Cambridge
,
2005
).
72.
A. B.
Grafton
,
A. D.
Dunkelberger
,
B. S.
Simpkins
,
J. F.
Triana
,
F. J.
Hernández
,
F.
Herrera
, and
J. C.
Owrutsky
,
Nat. Commun.
12
,
214
(
2021
).
73.
F. J.
Hernández
and
F.
Herrera
,
J. Chem. Phys.
151
,
144116
(
2019
).
74.
J. F.
Triana
,
F. J.
Hernández
, and
F.
Herrera
,
J. Chem. Phys.
152
,
234111
(
2020
).
75.
E. A.
Muller
,
B.
Pollard
,
H. A.
Bechtel
,
R.
Adato
,
D.
Etezadi
,
H.
Altug
, and
M. B.
Raschke
,
ACS Photonics
5
,
3594
(
2018
).
76.
B.
Metzger
,
E.
Muller
,
J.
Nishida
,
B.
Pollard
,
M.
Hentschel
, and
M. B.
Raschke
,
Phys. Rev. Lett.
123
,
153001
(
2019
).
77.
J. F.
Triana
,
M.
Arias
,
J.
Nishida
,
E. A.
Muller
,
R.
Wilcken
,
S. C.
Johnson
,
A.
Delgado
,
M. B.
Raschke
, and
F.
Herrera
,
J. Chem. Phys.
156
,
124110
(
2022
).
You do not currently have access to this content.