Colloids that attractively bond to only a few neighbors (e.g., patchy particles) can form equilibrium gels with distinctive dynamic properties that are stable in time. Here, we use a coarse-grained model to explore the dynamics of linked networks of patchy colloids whose average valence is macroscopically, rather than microscopically, constrained. Simulation results for the model show dynamic hallmarks of equilibrium gel formation and establish that the colloid–colloid bond persistence time controls the characteristic slow relaxation of the self-intermediate scattering function. The model features re-entrant network formation without phase separation as a function of linker concentration, centered at the stoichiometric ratio of linker ends to nanoparticle surface bonding sites. Departures from stoichiometry result in linker-starved or linker-saturated networks with reduced connectivity and shorter characteristic relaxation times with lower activation energies. Underlying the re-entrant trends, dynamic properties vary monotonically with the number of effective network bonds per colloid, a quantity that can be predicted using Wertheim’s thermodynamic perturbation theory. These behaviors suggest macroscopic in situ strategies for tuning the dynamic response of colloidal networks.

1.
S.
Manley
,
H. M.
Wyss
,
K.
Miyazaki
,
J. C.
Conrad
,
V.
Trappe
,
L. J.
Kaufman
,
D. R.
Reichman
, and
D. A.
Weitz
, “
Glasslike arrest in spinodal decomposition as a route to colloidal gelation
,”
Phys. Rev. Lett.
95
,
238302
(
2005
).
2.
Y.
Gao
,
J.
Kim
, and
M. E.
Helgeson
, “
Microdynamics and arrest of coarsening during spinodal decomposition in thermoreversible colloidal gels
,”
Soft Matter
11
,
6360
6370
(
2015
).
3.
K. A.
Whitaker
,
Z.
Varga
,
L. C.
Hsiao
,
M. J.
Solomon
,
J. W.
Swan
, and
E. M.
Furst
, “
Colloidal gel elasticity arises from the packing of locally glassy clusters
,”
Nat. Commun.
10
,
2237
(
2019
).
4.
G.
Petekidis
and
N. J.
Wagner
, “
Rheology of colloidal glasses and gels
,” in
Theory and Applications of Colloidal Suspension Rheology
, edited by
N. J.
Wagner
and
J.
Mewis
(
Cambridge University Press
,
Cambridge, UK
,
2021
), Chap. 5, pp.
173
226
.
5.
H.
Guo
,
S.
Ramakrishnan
,
J. L.
Harden
, and
R. L.
Leheny
, “
Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations
,”
J. Chem. Phys.
135
,
154903
(
2011
).
6.
A. P. R.
Eberle
,
R.
Castañeda-Priego
,
J. M.
Kim
, and
N. J.
Wagner
, “
Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions
,”
Langmuir
28
,
1866
1878
(
2012
).
7.
A. S.
Negi
,
C. G.
Redmon
,
S.
Ramakrishnan
, and
C. O.
Osuji
, “
Viscoelasticity of a colloidal gel during dynamical arrest: Evolution through the critical gel and comparison with a soft colloidal glass
,”
J. Rheol.
58
,
1557
1579
(
2014
).
8.
L. C.
Johnson
,
R. N.
Zia
,
E.
Moghimi
, and
G.
Petekidis
, “
Influence of structure on the linear response rheology of colloidal gels
,”
J. Rheol.
63
,
583
608
(
2019
).
9.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Phase diagram of patchy colloids: Towards empty liquids
,”
Phys. Rev. Lett.
97
,
168301
(
2006
).
10.
F.
Sciortino
and
E.
Zaccarelli
, “
Reversible gels of patchy particles
,”
Curr. Opin. Solid State Mater. Sci.
15
,
246
253
(
2011
).
11.
F.
Sciortino
and
E.
Zaccarelli
, “
Equilibrium gels of limited valence colloids
,”
Curr. Opin. Colloid Interface Sci.
30
,
90
96
(
2017
).
12.
E.
Lattuada
,
D.
Caprara
,
R.
Piazza
, and
F.
Sciortino
, “
Spatially uniform dynamics in equilibrium colloidal gels
,”
Sci. Adv.
7
,
eabk2360
(
2021
).
13.
S.
Biffi
,
R.
Cerbino
,
G.
Nava
,
F.
Bomboi
,
F.
Sciortino
, and
T.
Bellini
, “
Equilibrium gels of low-valence DNA nanostars: A colloidal model for strong glass formers
,”
Soft Matter
11
,
3132
3138
(
2015
).
14.
F.
Bomboi
,
S.
Biffi
,
R.
Cerbino
,
T.
Bellini
,
F.
Bordi
, and
F.
Sciortino
, “
Equilibrium gels of trivalent DNA-nanostars: Effect of the ionic strength on the dynamics
,”
Eur. Phys. J. E
38
,
64
(
2015
).
15.
P. I.
Hurtado
,
L.
Berthier
, and
W.
Kob
, “
Heterogeneous diffusion in a reversible gel
,”
Phys. Rev. Lett.
98
,
135503
(
2007
).
16.
B. A.
Lindquist
,
R. B.
Jadrich
,
D. J.
Milliron
, and
T. M.
Truskett
, “
On the formation of equilibrium gels via a macroscopic bond limitation
,”
J. Chem. Phys.
145
,
074906
(
2016
).
17.
F.
Bomboi
,
D.
Caprara
,
J.
Fernandez-Castanon
, and
F.
Sciortino
, “
Cold-swappable DNA gels
,”
Nanoscale
11
,
9691
9697
(
2019
).
18.
M. P.
Howard
,
R. B.
Jadrich
,
B. A.
Lindquist
,
F.
Khabaz
,
R. T.
Bonnecaze
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Structure and phase behavior of polymer-linked colloidal gels
,”
J. Chem. Phys.
151
,
124901
(
2019
).
19.
J.
Lowensohn
,
B.
Oyarzún
,
G. N.
Paliza
,
B. M.
Mognetti
, and
W. B.
Rogers
, “
Linker-mediated phase behavior of DNA-coated colloids
,”
Phys. Rev. X
9
,
041054
(
2019
).
20.
M. P.
Howard
,
Z. M.
Sherman
,
A. N.
Sreenivasan
,
S. A.
Valenzuela
,
E. V.
Anslyn
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Effects of linker flexibility on phase behavior and structure of linked colloidal gels
,”
J. Chem. Phys.
154
,
074901
(
2021
).
21.
M. P.
Howard
,
Z. M.
Sherman
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Wertheim’s thermodynamic perturbation theory with double-bond association and its application to colloid–linker mixtures
,”
J. Chem. Phys.
154
,
024905
(
2021
).
22.
R.
Braz Teixeira
,
D.
de Las Heras
,
J. M.
Tavares
, and
M. M.
Telo da Gama
, “
Phase behavior of a binary mixture of patchy colloids: Effect of particle size and gravity
,”
J. Chem. Phys.
155
,
044903
(
2021
).
23.
X.
Xia
,
H.
Hu
,
M. P.
Ciamarra
, and
R.
Ni
, “
Linker-mediated self-assembly of mobile DNA-coated colloids
,”
Sci. Adv.
6
,
eaaz6921
(
2020
).
24.
M.
Gouveia
,
C.
Dias
, and
J.
Tavares
, “
Percolation in binary mixtures of linkers and particles: Chaining vs branching
,”
J. Chem. Phys.
157
,
164903
(
2022
).
25.
M.
Singh
,
Z. M.
Sherman
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Linker-templated structure tuning of optical response in plasmonic nanoparticle gels
,”
J. Phys. Chem. C
(
2022
).
26.
E.
Michel
,
M.
Filali
,
R.
Aznar
,
G.
Porte
, and
J.
Appell
, “
Percolation in a model transient network: Rheology and dynamic light scattering
,”
Langmuir
16
,
8702
8711
(
2000
).
27.
M.
Filali
,
M. J.
Ouazzani
,
E.
Michel
,
R.
Aznar
,
G.
Porte
, and
J.
Appell
, “
Robust phase behavior of model transient networks
,”
J. Phys. Chem. B
105
,
10528
10535
(
2001
).
28.
A.
Singh
,
B. A.
Lindquist
,
G. K.
Ong
,
R. B.
Jadrich
,
A.
Singh
,
H.
Ha
,
C. J.
Ellison
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Linking semiconductor nanocrystals into gel networks through all-inorganic bridges
,”
Angew. Chem. Int.
54
,
14840
14844
(
2015
).
29.
V.
Sayevich
,
B.
Cai
,
A.
Benad
,
D.
Haubold
,
L.
Sonntag
,
N.
Gaponik
,
V.
Lesnyak
, and
A.
Eychmüller
, “
3d assembly of all-inorganic colloidal nanocrystals into gels and aerogels
,”
Angew. Chem., Int. Ed.
55
,
6334
6338
(
2016
).
30.
M. N.
Dominguez
,
M. P.
Howard
,
J. M.
Maier
,
S.
Valenzuela
,
Z. M.
Sherman
,
L. C.
Reimnitz
,
J.
Kang
,
S. H.
Cho
,
S. L.
Gibbs
,
A. K.
Menta
,
D. L.
Zhuang
,
A.
van der Stok
,
S. J.
Kline
,
E. V.
Anslyn
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Assembly of linked nanocrystal colloids by reversible covalent bonds
,”
Chem. Mater.
32
,
10235
10245
(
2020
).
31.
J.
Song
,
M. H.
Rizvi
,
B. B.
Lynch
,
J.
Ilavsky
,
D.
Mankus
,
J. B.
Tracy
,
G. H.
McKinley
, and
N.
Holten-Andersen
, “
Programmable anisotropy and percolation in supramolecular patchy particle gels
,”
ACS Nano
14
,
17018
17027
(
2020
).
32.
J.
Kang
,
S. A.
Valenzuela
,
E. Y.
Lin
,
M. N.
Dominguez
,
Z. M.
Sherman
,
T. M.
Truskett
,
E. V.
Anslyn
, and
D. J.
Milliron
, “
Colorimetric quantification of linking in thermoreversible nanocrystal gel assemblies
,”
Sci. Adv.
8
,
eabm7364
(
2021
).
33.
A. M.
Green
,
C. K.
Ofosu
,
J.
Kang
,
E. V.
Anslyn
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Assembling inorganic nanocrystal gels
,”
Nano Lett.
22
,
1457
1466
(
2022
).
34.
Z. M.
Sherman
,
K.
Kim
,
J.
Kang
,
B. J.
Roman
,
H. S. N.
Crory
,
D. L.
Conrad
,
S. A.
Valenzuela
,
E. Y.
Lin
,
M. N.
Dominguez
,
S. L.
Gibbs
,
E. V.
Anslyn
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Plasmonic response of complex nanoparticle assemblies
,” chemRxiv:2022–rkqw8 (
2022
).
35.
J.
Kang
,
Z.
Sherman
,
H.
Crory
,
D.
Conrad
,
M.
Berry
,
B.
Roman
,
E.
Anslyn
,
T.
Truskett
, and
D.
Milliron
, “
Modular mixing in plasmonic metal oxide nanocrystal gels with thermoreversible links
,” chemRxiv:, 10.26434/chemrxiv–2022–m40v2 (
2022
).
36.
Z. M.
Sherman
,
A. M.
Green
,
M. P.
Howard
,
E. V.
Anslyn
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Colloidal nanocrystal gels from thermodynamic principles
,”
Acc. Chem. Res.
54
,
798
807
(
2021
).
37.
C.
Zhao
,
G.
Yuan
,
D.
Jia
, and
C. C.
Han
, “
Macrogel induced by microgel: Bridging and depletion mechanisms
,”
Soft Matter
8
,
7036
7043
(
2012
).
38.
J.
Luo
,
G.
Yuan
,
C.
Zhao
,
C. C.
Han
,
J.
Chen
, and
Y.
Liu
, “
Gelation of large hard particles with short-range attraction induced by bridging of small soft microgels
,”
Soft Matter
11
,
2494
2503
(
2015
).
39.
C. A.
Saez Cabezas
,
G. K.
Ong
,
R. B.
Jadrich
,
B. A.
Lindquist
,
A.
Agrawal
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Gelation of plasmonic metal oxide nanocrystals by polymer-induced depletion attractions
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
8925
8930
(
2018
).
40.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
41.
M.
Bishop
,
M. H.
Kalos
, and
H. L.
Frisch
, “
Molecular dynamics of polymeric systems
,”
J. Chem. Phys.
70
,
1299
1304
(
1979
).
42.
G. S.
Grest
and
K.
Kremer
, “
Molecular dynamics simulation for polymers in the presence of a heat bath
,”
Phys. Rev. A
33
,
3628
3631
(
1986
).
43.
C. A.
Mirkin
,
R. L.
Letsinger
,
R. C.
Mucic
, and
J. J.
Storhoff
, “
A DNA-based method for rationally assembling nanoparticles into macroscopic materials
,”
Nature
382
,
607
609
(
1996
).
44.
A. P.
Alivisatos
,
K. P.
Johnsson
,
X.
Peng
,
T. E.
Wilson
,
C. J.
Loweth
,
M. P.
Bruchez
, and
P. G.
Schultz
, “
Organization of ‘nanocrystal molecules’ using DNA
,”
Nature
382
,
609
611
(
1996
).
45.
D.
Nykypanchuk
,
M. M.
Maye
,
D.
Van Der Lelie
, and
O.
Gang
, “
DNA-guided crystallization of colloidal nanoparticles
,”
Nature
451
,
549
552
(
2008
).
46.
H.
Xiong
,
D.
van der Lelie
, and
O.
Gang
, “
Phase behavior of nanoparticles assembled by DNA linkers
,”
Phys. Rev. Lett.
102
,
015504
(
2009
).
47.
S.
Biffi
,
R.
Cerbino
,
F.
Bomboi
,
E. M.
Paraboschi
,
R.
Asselta
,
F.
Sciortino
, and
T.
Bellini
, “
Phase behavior and critical activated dynamics of limited-valence DNA nanostars
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
15633
15637
(
2013
).
48.
W. B.
Rogers
and
V. N.
Manoharan
, “
Programming colloidal phase transitions with DNA strand displacement
,”
Science
347
,
639
642
(
2015
).
49.
M. R.
Jones
,
N. C.
Seeman
, and
C. A.
Mirkin
, “
Programmable materials and the nature of the DNA bond
,”
Science
347
,
1260901
(
2015
).
50.
S. J.
Rowan
,
S. J.
Cantrill
,
G. R. L.
Cousins
,
J. K. M.
Sanders
, and
J. F.
Stoddart
, “
Dynamic covalent chemistry
,”
Angew. Chem., Int. Ed.
41
,
898
952
(
2002
).
51.
Y.
Jin
,
C.
Yu
,
R. J.
Denman
, and
W.
Zhang
, “
Recent advances in dynamic covalent chemistry
,”
Chem. Soc. Rev.
42
,
6634
6654
(
2013
).
52.
H. M.
Seifert
,
K.
Ramirez Trejo
, and
E. V.
Anslyn
, “
Four simultaneously dynamic covalent reactions. Experimental proof of orthogonality
,”
J. Am. Chem. Soc.
138
,
10916
10924
(
2016
).
53.
S.
Borsley
and
E. R.
Kay
, “
Dynamic covalent assembly and disassembly of nanoparticle aggregates
,”
Chem. Commun.
52
,
9117
9120
(
2016
).
54.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
55.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids with Applications to Soft Matter
, 4th ed. (
Academic Press
,
New York
,
2013
).
56.
R. B.
Jadrich
,
J. A.
Bollinger
,
K. P.
Johnston
, and
T. M.
Truskett
, “
Origin and detection of microstructural clustering in fluids with spatial-range competitive interactions
,”
Phys. Rev. E
91
,
042312
(
2015
).
57.
E.
Zaccarelli
,
S. V.
Buldyrev
,
E.
La Nave
,
A. J.
Moreno
,
I.
Saika-Voivod
,
F.
Sciortino
, and
P.
Tartaglia
, “
Model for reversible colloidal gelation
,”
Phys. Rev. Lett.
94
,
218301
(
2005
).
58.
A.
Luzar
, “
Resolving the hydrogen bond dynamics conundrum
,”
J. Chem. Phys.
113
,
10663
10675
(
2000
).
59.
S.
Pal
,
S.
Balasubramanian
, and
B.
Bagchi
, “
Dynamics of bound and free water in an aqueous micellar solution: Analysis of the lifetime and vibrational frequencies of hydrogen bonds at a complex interface
,”
Phys. Rev. E
67
,
061502
(
2003
).
60.
E.
Del Gado
and
W.
Kob
, “
Network formation and relaxation dynamics in a new model for colloidal gelation
,”
J. Non-Newtonian Fluid Mech.
149
,
28
33
(
2008
).
61.
M. A.
Miller
,
R.
Blaak
,
C. N.
Lumb
, and
J.-P.
Hansen
, “
Dynamical arrest in low density dipolar colloidal gels
,”
J. Chem. Phys.
130
,
114507
(
2009
).
62.
E.
Del Gado
and
W.
Kob
, “
A microscopic model for colloidal gels with directional effective interactions: Network induced glassy dynamics
,”
Soft Matter
6
,
1547
1558
(
2010
).
63.
E.
Bianchi
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Theoretical and numerical study of the phase diagram of patchy colloids: Ordered and disordered patch arrangements
,”
J. Chem. Phys.
128
,
144504
(
2008
).
64.
J.
Russo
,
P.
Tartaglia
, and
F.
Sciortino
, “
Reversible gels of patchy particles: Role of the valence
,”
J. Chem. Phys.
131
,
014504
(
2009
).
65.
J.
Russo
,
J. M.
Tavares
,
P. I. C.
Teixeira
,
M. M.
Telo da Gama
, and
F.
Sciortino
, “
Reentrant phase diagram of network fluids
,”
Phys. Rev. Lett.
106
,
085703
(
2011
).
66.
J. M.
Tavares
,
P. I. C.
Teixeira
,
M. M.
Telo da Gama
, and
F.
Sciortino
, “
Equilibrium self-assembly of colloids with distinct interaction sites: Thermodynamics, percolation, and cluster distribution functions
,”
J. Chem. Phys.
132
,
234502
(
2010
).
67.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. I. Statistical thermodynamics
,”
J. Stat. Phys.
35
,
19
34
(
1984
).
68.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations
,”
J. Stat. Phys.
35
,
35
47
(
1984
).
69.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. III. Multiple attraction sites
,”
J. Stat. Phys.
42
,
459
476
(
1986
).
70.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. IV. Equilibrium polymerization
,”
J. Stat. Phys.
42
,
477
492
(
1986
).
71.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
1953
).
72.
W. H.
Stockmayer
, “
Theory of molecular size distribution and gel formation in branched-chain polymers
,”
J. Chem. Phys.
11
,
45
55
(
1943
).
73.
L.
Rovigatti
and
F.
Sciortino
, “
Self and collective correlation functions in a gel of tetrahedral patchy particles
,”
Mol. Phys.
109
,
2889
2896
(
2011
).
74.
S.
Roldán-Vargas
,
L.
Rovigatti
, and
F.
Sciortino
, “
Connectivity, dynamics, and structure in a tetrahedral network liquid
,”
Soft Matter
13
,
514
530
(
2017
).
75.
J.
Russo
,
F.
Leoni
,
F.
Martelli
, and
F.
Sciortino
, “
The physics of empty liquids: From patchy particles to water
,”
Rep. Prog. Phys.
85
,
016601
(
2021
).
76.
F.
Smallenburg
and
F.
Sciortino
, “
Liquids more stable than crystals in particles with limited valence and flexible bonds
,”
Nat. Phys.
9
,
554
558
(
2013
).
77.
R.
Shi
,
J.
Russo
, and
H.
Tanaka
, “
Common microscopic structural origin for water’s thermodynamic and dynamic anomalies
,”
J. Chem. Phys.
149
,
224502
(
2018
).
78.
J.
Russo
,
K.
Akahane
, and
H.
Tanaka
, “
Water-like anomalies as a function of tetrahedrality
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E3333
E3341
(
2018
).
79.
L.
Rovigatti
,
G.
Nava
,
T.
Bellini
, and
F.
Sciortino
, “
Self-dynamics and collective swap-driven dynamics in a particle model for vitrimers
,”
Macromolecules
51
,
1232
1241
(
2018
).
80.
C.
De Michele
,
S.
Gabrielli
,
P.
Tartaglia
, and
F.
Sciortino
, “
Dynamics in the presence of attractive patchy interactions
,”
J. Phys. Chem. B
110
,
8064
8079
(
2006
).
81.
I.
Nezbeda
,
J.
Kolafa
, and
Y.
Kalyuzhnyi
, “
Primitive model of water: II. Theoretical results for the structure and thermodynamic properties
,”
Mol. Phys.
68
,
143
160
(
1989
).
82.
I.
Nezbeda
and
G. A.
Iglesias-Silva
, “
Primitive model of water III. Analytic theoretical results with anomalies for the thermodynamic properties
,”
Mol. Phys.
69
,
767
774
(
1990
).
83.
F.
Bomboi
,
F.
Romano
,
M.
Leo
,
J.
Fernandez-Castanon
,
R.
Cerbino
,
T.
Bellini
,
F.
Bordi
,
P.
Filetici
, and
F.
Sciortino
, “
Re-entrant DNA gels
,”
Nat. Commun.
7
,
13191
(
2016
).
84.
E.
Bianchi
,
P.
Tartaglia
,
E.
La Nave
, and
F.
Sciortino
, “
Fully solvable equilibrium self-assembly process: Fine-tuning the clusters size and the connectivity in patchy particle systems
,”
J. Phys. Chem. B
111
,
11765
11769
(
2007
).
85.
T. M.
FitzSimons
,
E. V.
Anslyn
, and
A. M.
Rosales
, “
Effect of pH on the properties of hydrogels cross-linked via dynamic thia-michael addition bonds
,”
ACS Polym. Au
2
,
129
136
(
2021
).
86.
G. L.
Jackson
,
J. M.
Dennis
,
N. D.
Dolinski
,
M.
van der Naald
,
H.
Kim
,
C.
Eom
,
S. J.
Rowan
, and
H. M.
Jaeger
, “
Designing stress-adaptive dense suspensions using dynamic covalent chemistry
,”
Macromolecules
55
,
6453
6461
(
2022
).

Supplementary Material

You do not currently have access to this content.