Electrochemistry is central to many applications, ranging from biology to energy science. Studies now involve a wide range of techniques, both experimental and theoretical. Modeling and simulations methods, such as density functional theory or molecular dynamics, provide key information on the structural and dynamic properties of the systems. Of particular importance are polarization effects of the electrode/electrolyte interface, which are difficult to simulate accurately. Here, we show how these electrostatic interactions are taken into account in the framework of the Ewald summation method. We discuss, in particular, the formal setup for calculations that enforce periodic boundary conditions in two directions, a geometry that more closely reflects the characteristics of typical electrolyte/electrode systems and presents some differences with respect to the more common case of periodic boundary conditions in three dimensions. These formal developments are implemented and tested in MetalWalls, a molecular dynamics software that captures the polarization of the electrolyte and allows the simulation of electrodes maintained at a constant potential. We also discuss the technical aspects involved in the calculation of two sets of coupled degrees of freedom, namely the induced dipoles and the electrode charges. We validate the implementation, first on simple systems, then on the well-known interface between graphite electrodes and a room-temperature ionic liquid. We finally illustrate the capabilities of MetalWalls by studying the adsorption of a complex functionalized electrolyte on a graphite electrode.

1.
N.
Yao
,
X.
Chen
,
Z.-H.
Fu
, and
Q.
Zhang
, “
Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries
,”
Chem. Rev.
122
,
10970
11021
(
2022
).
2.
R. E.
Warburton
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
, “
Theoretical modeling of electrochemical proton-coupled electron transfer
,”
Chem. Rev.
122
,
10599
10650
(
2022
).
3.
A.
Groß
and
S.
Sakong
, “
Ab initio simulations of water/metal interfaces
,”
Chem. Rev.
122
,
10746
10776
(
2022
).
4.
X.
Zhao
,
Z. H.
Levell
,
S.
Yu
, and
Y.
Liu
, “
Atomistic understanding of two-dimensional electrocatalysts from first principles
,”
Chem. Rev.
122
,
10675
10709
(
2022
).
5.
F.
Dattila
,
R. R.
Seemakurthi
,
Y.
Zhou
, and
N.
López
, “
Modeling operando electrochemical CO2 reduction
,”
Chem. Rev.
122
,
11085
11130
(
2022
).
6.
G.
Jeanmairet
,
B.
Rotenberg
, and
M.
Salanne
, “
Microscopic simulations of electrochemical double-layer capacitors
,”
Chem. Rev.
122
,
10860
10898
(
2022
).
7.
A.
Van der Ven
,
Z.
Deng
,
S.
Banerjee
, and
S. P.
Ong
, “
Rechargeable alkali-ion battery materials: Theory and computation
,”
Chem. Rev.
120
,
6977
7019
(
2020
).
8.
D.
Bedrov
,
J.-P.
Piquemal
,
O.
Borodin
,
A. D.
MacKerell
, Jr.
,
B.
Roux
, and
C.
Schröder
, “
Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields
,”
Chem. Rev.
119
,
7940
7995
(
2019
).
9.
L.
Scalfi
,
M.
Salanne
, and
B.
Rotenberg
, “
Molecular simulation of electrode-solution interfaces
,”
Annu. Rev. Phys. Chem.
72
,
189
212
(
2021
).
10.
A. A.
Kornyshev
, “
Double-layer in ionic liquids: Paradigm change?
,”
J. Phys. Chem. B
111
,
5545
5557
(
2007
).
11.
C.-Y.
Li
,
J.-B.
Le
,
Y.-H.
Wang
,
S.
Chen
,
Z.-L.
Yang
,
J.-F.
Li
,
J.
Cheng
, and
Z.-Q.
Tian
, “
In situ probing electrified interfacial water structures at atomically flat surfaces
,”
Nat. Mater.
18
,
697
701
(
2019
).
12.
J. I.
Siepmann
and
M.
Sprik
, “
Influence of surface topology and electrostatic potential on water/electrode systems
,”
J. Chem. Phys.
102
,
511
524
(
1995
).
13.
I.-C.
Yeh
and
M. L.
Berkowitz
, “
Ewald summation for systems with slab geometry
,”
J. Chem. Phys.
111
,
3155
3162
(
1999
).
14.
J. B.
Haskins
and
J. W.
Lawson
, “
Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers
,”
J. Chem. Phys.
144
,
184707
(
2016
).
15.
S. K.
Reed
,
O. J.
Lanning
, and
P. A.
Madden
, “
Electrochemical interface between an ionic liquid and a model metallic electrode
,”
J. Chem. Phys.
126
,
084704
(
2007
).
16.
T. R.
Gingrich
and
M.
Wilson
, “
On the Ewald summation of Gaussian charges for the simulation of metallic surfaces
,”
Chem. Phys. Lett.
500
,
178
183
(
2010
).
17.
Z.
Wang
,
Y.
Yang
,
D. L.
Olmsted
,
M.
Asta
, and
B. B.
Laird
, “
Evaluation of the constant potential method in simulating electric double-layer capacitors
,”
J. Chem. Phys.
141
,
184102
(
2014
).
18.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
19.
L. J. V.
Ahrens-Iwers
and
R. H.
Meißner
, “
Constant potential simulations on a mesh
,”
J. Chem. Phys.
155
,
104104
(
2021
).
20.
S. R.
Tee
and
D. J.
Searles
, “
Fully periodic, computationally efficient constant potential molecular dynamics simulations of ionic liquid supercapacitors
,”
J. Chem. Phys.
156
,
184101
(
2022
).
21.
C.
Schröder
and
O.
Steinhauser
, “
Simulating polarizable molecular ionic liquids with Drude oscillators
,”
J. Chem. Phys.
133
,
154511
(
2010
).
22.
M.
Salanne
, “
Simulations of room temperature ionic liquids: From polarizable to coarse-grained force fields
,”
Phys. Chem. Chem. Phys.
17
,
14270
14279
(
2015
).
23.
K.
Goloviznina
,
J. N. C.
Lopes
,
M. C.
Gomes
, and
A. A. H.
Pádua
, “
Transferable, polarizable force field for ionic liquids
,”
J. Chem. Theory Comput.
15
,
5858
5871
(
2019
).
24.
A.
Aguado
and
P. A.
Madden
, “
Ewald summation of electrostatic multipole interactions up to the quadrupolar level
,”
J. Chem. Phys.
119
,
7471
7483
(
2003
).
25.
N.
Ohtori
,
M.
Salanne
, and
P. A.
Madden
, “
Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials
,”
J. Chem. Phys.
130
,
104507
(
2009
).
26.
M.
Pounds
, “
Electrochemical charge transfer at a metallic electrode: A simulation study
,” Ph.D. thesis,
University of Edinburgh
,
2009
.
27.
A.
Coretti
,
S.
Bonella
, and
G.
Ciccotti
, “
Communication: Constrained molecular dynamics for polarizable models
,”
J. Chem. Phys.
149
,
191102
(
2018
).
28.
A.
Coretti
,
L.
Scalfi
,
C.
Bacon
,
B.
Rotenberg
,
R.
Vuilleumier
,
G.
Ciccotti
,
M.
Salanne
, and
S.
Bonella
, “
Mass-zero constrained molecular dynamics for electrode charges in simulations of electrochemical systems
,”
J. Chem. Phys.
152
,
194701
(
2020
).
29.
M.
Pounds
,
S.
Tazi
,
M.
Salanne
, and
P. A.
Madden
, “
Ion adsorption at a metallic electrode: An ab initio based simulation study
,”
J. Phys.: Condens. Matter
21
,
424109
(
2009
).
30.
S.
Tazi
,
M.
Salanne
,
C.
Simon
,
P.
Turq
,
M.
Pounds
, and
P. A.
Madden
, “
Potential-induced ordering transition of the adsorbed layer at the ionic liquid/electrified metal interface
,”
J. Phys. Chem. B
114
,
8453
8459
(
2010
).
31.
F.
Wang
,
O.
Borodin
,
M. S.
Ding
,
M.
Gobet
,
J.
Vatamanu
,
X.
Fan
,
T.
Gao
,
N.
Eidson
,
Y.
Liang
,
S.
Greenbaum
,
K.
Xu
, and
C.
Wang
, “
Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries
,”
Joule
2
,
927
937
(
2018
).
32.
D. T.
Margul
and
M. E.
Tuckerman
, “
A stochastic, resonance-free multiple time-step algorithm for polarizable models that permits very large time steps
,”
J. Chem. Theory Comput.
12
,
2170
2180
(
2016
).
33.
P.
Monmarché
,
J.
Weisman
,
L.
Lagardère
, and
J.-P.
Piquemal
, “
Velocity jump processes: An alternative to multi-timestep methods for faster and accurate molecular dynamics simulations
,”
J. Chem. Phys.
153
,
024101
(
2020
).
34.
A.
Marin-Laflèche
,
M.
Haefele
,
L.
Scalfi
,
A.
Coretti
,
T.
Dufils
,
G.
Jeanmairet
,
S.
Reed
,
A.
Serva
,
R.
Berthin
,
C.
Bacon
,
S.
Bonella
,
B.
Rotenberg
,
P.
Madden
, and
M.
Salanne
, “
MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems
,”
J. Open Source Software
5
,
2373
(
2020
).
35.
R.
Berthin
,
A.
Serva
,
K. G.
Reeves
,
E.
Heid
,
C.
Schröder
, and
M.
Salanne
, “
Solvation of anthraquinone and tempo redox-active species in acetonitrile using a polarizable force field
,”
J. Chem. Phys.
155
,
074504
(
2021
).
36.
A.
Serva
,
L.
Scalfi
,
B.
Rotenberg
, and
M.
Salanne
, “
Effect of the metallicity on the capacitance of gold-aqueous sodium chloride interfaces
,”
J. Chem. Phys.
155
,
044703
(
2021
).
37.
A.
Aguado
,
L.
Bernasconi
, and
P. A.
Madden
, “
Interionic potentials from ab initio molecular dynamics: The alkaline earth oxides CaO, SrO, and BaO
,”
J. Chem. Phys.
118
,
5704
5717
(
2003
).
38.
M.
Neumann
, “
Dipole moment fluctuation formulas in computer simulations of polar systems
,”
Mol. Phys.
50
,
841
858
(
1983
).
39.
M.
Sprik
and
M. L.
Klein
, “
A polarizable model for water using distributed charge sites
,”
J. Chem. Phys.
89
,
7556
7560
(
1988
).
40.
J.
Kolafa
, “
Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules
,”
J. Comput. Chem.
25
,
335
342
(
2004
).
41.
L.
Scalfi
,
D. T.
Limmer
,
A.
Coretti
,
S.
Bonella
,
P. A.
Madden
,
M.
Salanne
, and
B.
Rotenberg
, “
Charge fluctuations from molecular simulations in the constant-potential ensemble
,”
Phys. Chem. Chem. Phys.
22
,
10480
10489
(
2020
).
42.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes in C: The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge, Cambridgeshire
,
1992
).
43.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
(
Springer
,
New York
,
2006
).
44.
T. D.
Kühne
,
M.
Krack
,
F. R.
Mohamed
, and
M.
Parrinello
, “
Efficient and accurate Car–Parrinello-like approach to Born–Oppenheimer molecular dynamics
,”
Phys. Rev. Lett.
98
,
066401
(
2007
).
45.
F.
Aviat
,
A.
Levitt
,
B.
Stamm
,
Y.
Maday
,
P.
Ren
,
J. W.
Ponder
,
L.
Lagardère
, and
J.-P.
Piquemal
, “
Truncated conjugate gradient: An optimal strategy for the analytical evaluation of the many-body polarization energy and forces in molecular simulations
,”
J. Chem. Theory Comput.
13
,
180
190
(
2017
).
46.
G.
Golub
and
C.
Van Loan
, “
Matrix computations
,” in
Johns Hopkins Studies in the Mathematical Sciences
(
Johns Hopkins University Press
,
2013
).
47.
Y.
Ishii
,
S.
Kasai
,
M.
Salanne
, and
N.
Ohtori
, “
Transport coefficients and the Stokes–Einstein relation in molten alkali halides with polarisable ion model
,”
Mol. Phys.
113
,
2442
2450
(
2015
).
48.
J. N. C.
Lopes
and
A. A. H.
Pádua
, “
Molecular force field for ionic liquids composed of triflate or bistriflimide anions
,”
J. Phys. Chem. B
108
,
16893
16898
(
2004
).
49.
J. N. C.
Lopes
,
J.
Deschamps
, and
A. A. H.
Pádua
, “
Modeling ionic liquids using a systematic all-atom force field
,”
J. Phys. Chem. B
108
,
11250
(
2004
).
50.
V.
Chaban
, “
Polarizability versus mobility: Atomistic force field for ionic liquids
,”
Phys. Chem. Chem. Phys.
13
,
16055
16062
(
2011
).
51.
B. L.
Bhargava
and
S.
Balasubramanian
, “
Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]
,”
J. Chem. Phys.
127
,
114510
(
2007
).
52.
Y.
Zhang
and
E. J.
Maginn
, “
A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids
,”
J. Phys. Chem. B
116
,
10036
10048
(
2012
).
53.
K.
Goloviznina
,
Z.
Gong
,
M. F.
Costa Gomes
, and
A. A. H.
Pádua
, “
Extension of the CL&Pol polarizable force field to electrolytes, protic ionic liquids, and deep eutectic solvents
,”
J. Chem. Theory Comput.
17
,
1606
1617
(
2021
).
54.
K.
Goloviznina
,
Z.
Gong
, and
A. A. H.
Padua
, “
The CL&Pol polarizable force field for the simulation of ionic liquids and eutectic solvents
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1572
(
2021
).
55.
P.
Drude
,
The Theory of Optics
(
Courier Dover Publications
,
1901
).
56.
E.
Heid
,
A.
Szabadi
, and
C.
Schröder
, “
Quantum mechanical determination of atomic polarizabilities of ionic liquids
,”
Phys. Chem. Chem. Phys.
20
,
10992
10996
(
2018
).
57.
B. T.
Thole
, “
Molecular polarizabilities calculated with a modified dipole interaction
,”
Chem. Phys.
59
,
341
350
(
1981
).
58.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
59.
K. T.
Tang
and
J. P.
Toennies
, “
An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients
,”
J. Chem. Phys.
80
,
3726
3741
(
1984
).
60.
C.
Merlet
,
B.
Rotenberg
,
P. A.
Madden
,
P.-L.
Taberna
,
P.
Simon
,
Y.
Gogotsi
, and
M.
Salanne
, “
On the molecular origin of supercapacitance in nanoporous carbon electrodes
,”
Nat. Mater.
11
,
306
310
(
2012
).
61.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
62.
R. L.
Gardas
,
M. G.
Freire
,
P. J.
Carvalho
,
I. M.
Marrucho
,
I. M. A.
Fonseca
,
A. G. M.
Ferreira
, and
J. A. P.
Coutinho
, “
PρT measurements of imidazolium-based ionic liquids
,”
J. Chem. Eng. Data
52
,
1881
1888
(
2007
).
63.
G.
Feng
,
S.
Li
,
W.
Zhao
, and
P. T.
Cummings
, “
Microstructure of room temperature ionic liquids at stepped graphite electrodes
,”
AIChE J.
61
,
3022
3028
(
2015
).
64.
A.
Fang
and
A.
Smolyanitsky
, “
Simulation study of the capacitance and charging mechanisms of ionic liquid mixtures near carbon electrodes
,”
J. Phys. Chem. C
123
,
1610
1618
(
2019
).
65.
P. S.
Gil
,
S. J.
Jorgenson
,
A. R.
Riet
, and
D. J.
Lacks
, “
Relationships between molecular structure, interfacial structure, and dynamics of ionic liquids near neutral and charged surfaces
,”
J. Phys. Chem. C
122
,
27462
27468
(
2018
).
66.
S.
Li
,
Z.
Zhao
, and
X.
Liu
, “
Electric double layer structure and capacitance of imidazolium-based ionic liquids with FSI- and Tf- anions at graphite electrode by molecular dynamic simulations
,”
J. Electroanal. Chem.
851
,
113452
(
2019
).
67.
N. N.
Rajput
,
J.
Monk
,
R.
Singh
, and
F. R.
Hung
, “
On the influence of pore size and pore loading on structural and dynamical heterogeneities of an ionic liquid confined in a slit nanopore
,”
J. Phys. Chem. C
116
,
5169
5181
(
2012
).
68.
J.
Vatamanu
,
O.
Borodin
,
D.
Bedrov
, and
G. D.
Smith
, “
Molecular dynamics simulation study of the interfacial structure and differential capacitance of alkylimidazolium bis(trifluoromethanesulfonyl)imide [cnmim][TFSI] ionic liquids at graphite electrodes
,”
J. Phys. Chem. C
116
,
7940
7951
(
2012
).
69.
Z.
Hu
,
J.
Vatamanu
,
O.
Borodin
, and
D.
Bedrov
, “
A comparative study of alkylimidazolium room temperature ionic liquids with FSI and TFSI anions near charged electrodes
,”
Electrochim. Acta
145
,
40
52
(
2014
).
70.
E.
Mourad
,
L.
Coustan
,
S. A.
Freunberger
,
A.
Mehdi
,
A.
Vioux
,
F.
Favier
, and
O.
Fontaine
, “
Biredox ionic liquids: Electrochemical investigation and impact of ion size on electron transfer
,”
Electrochim. Acta
206
,
513
523
(
2016
).
71.
E.
Mourad
,
L.
Coustan
,
P.
Lannelongue
,
D.
Zigah
,
A.
Mehdi
,
A.
Vioux
,
S. A.
Freunberger
,
F.
Favier
, and
O.
Fontaine
, “
Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors
,”
Nat. Mater.
16
,
446
453
(
2017
).
72.
C.
Bodin
,
E.
Mourad
,
D.
Zigah
,
S.
Le Vot
,
S. A.
Freunberger
,
F.
Favier
, and
O.
Fontaine
, “
Biredox ionic liquids: New opportunities toward high performance supercapacitors
,”
Faraday Discuss.
206
,
393
404
(
2018
).
73.
O.
Fontaine
, “
A deeper understanding of the electron transfer is the key to the success of biredox ionic liquids
,”
Energy Storage Mater.
21
,
240
245
(
2019
).
74.
P.
Lemaire
,
A.
Serva
,
M.
Salanne
,
G.
Rousse
,
H.
Perrot
,
O.
Sel
, and
J.-M.
Tarascon
, “
Probing the electrode—Electrolyte interface of a model K-ion battery electrode—The origin of rate capability discrepancy between aqueous and non-aqueous electrolytes
,”
ACS Appl. Mater. Interfaces
14
,
20835
20847
(
2022
).
75.
N.
Dubouis
,
A.
Serva
,
R.
Berthin
,
G.
Jeanmairet
,
B.
Porcheron
,
E.
Salager
,
M.
Salanne
, and
A.
Grimaud
, “
Tuning water reduction through controlled nanoconfinement within an organic liquid matrix
,”
Nat. Catal.
3
,
656
663
(
2020
).
76.
L.
Scalfi
,
T.
Dufils
,
K. G.
Reeves
,
B.
Rotenberg
, and
M.
Salanne
, “
A semiclassical Thomas–Fermi model to tune the metallicity of electrodes in molecular simulations
,”
J. Chem. Phys.
153
,
174704
(
2020
).
77.
A.
Schlaich
,
D.
Jin
,
L.
Bocquet
, and
B.
Coasne
, “
Electronic screening using a virtual Thomas–Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces
,”
Nat. Mater.
21
,
237
245
(
2022
).
78.
P.
Clabaut
,
P.
Fleurat-Lessard
,
C.
Michel
, and
S. N.
Steinmann
, “
Ten facets, one force field: The GAL19 force field for water-noble metal interfaces
,”
J. Chem. Theory Comput.
16
,
4565
4578
(
2020
).
79.
M.
Ruggeri
,
K.
Reeves
,
T.-Y.
Hsu
,
G.
Jeanmairet
,
M.
Salanne
, and
C.
Pierleoni
, “
Multi-scale simulation of the adsorption of lithium ion on graphite surface: From quantum Monte Carlo to molecular density functional theory
,”
J. Chem. Phys.
156
,
094709
(
2022
).

Supplementary Material

You do not currently have access to this content.