Line tension in wetting processes is of high scientific and technological relevance, but its understanding remains vague, mainly because it is difficult to determine. A widely used method to extract line tension relies on the variation of a droplet’s contact angle with the droplet’s size. Such an approach yields the apparent line tension, which is an effective parameter that factors in numerous contributions to the finite-size dependence, thus masking the actual line tension in terms of the excess free energy of the three-phase contact line. Based on our recent computer simulation study, we investigate how small amounts of nonionic surfactants, such as surface-active impurities, contribute to the apparent line tension in aqueous droplets. When depositing polydisperse droplets, their different surface area-to-volume ratios can result in different final bulk concentrations of surfactants, different excess adsorptions to the interfaces, and, consequently, different contact angles. We show that already trace amounts of longer-chained surfactants in a pre-contaminated liquid are enough to affect measurements of the apparent line tension. Our analysis quantifies to what extent “background” impurities, inevitably present in all kinds of experimental settings, limit the resolution of line tension measurements, which is crucial for avoiding data misinterpretation.

1.
P. G.
De Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
2.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
805
(
2009
).
3.
K.
Liu
,
M.
Vuckovac
,
M.
Latikka
,
T.
Huhtamäki
, and
R. H. A.
Ras
, “
Improving surface-wetting characterization
,”
Science
363
,
1147
1148
(
2019
).
4.
J.
Willard Gibbs
,
The Collected Works of J. Willard Gibbs
(
Yale University Press
,
London
,
1957
).
5.
L.
Boruvka
and
A. W.
Neumann
, “
Generalization of the classical theory of capillarity
,”
J. Chem. Phys.
66
,
5464
5476
(
1977
).
6.
J.
Gaydos
and
A. W.
Neumann
, “
The dependence of contact angles on drop size and line tension
,”
J. Colloid Interface Sci.
120
,
76
86
(
1987
).
7.
J. F.
Joanny
and
P. G.
De Gennes
, “
Role of long-range forces in heterogeneous nucleation
,”
J. Colloid Interface Sci.
111
,
94
101
(
1986
).
8.
B. M.
Law
, “
Theory of nucleated wetting
,”
Phys. Rev. Lett.
72
,
1698
(
1994
).
9.
U.
Retter
,
K.
Siegler
, and
D.
Vollhardt
, “
Determination of the nucleus-to-surroundings interfacial tensions and the line tension of lenticular nuclei formed from insoluble monolayers at the air-water interface
,”
Langmuir
12
,
3976
3979
(
1996
).
10.
B.
Lefevre
,
A.
Saugey
,
J. L.
Barrat
,
L.
Bocquet
,
E.
Charlaix
,
P. F.
Gobin
, and
G.
Vigier
, “
Intrusion and extrusion of water in hydrophobic mesopores
,”
J. Chem. Phys.
120
,
4927
4938
(
2004
).
11.
J.
Zhang
,
F.
Leroy
, and
F.
Müller-Plathe
, “
Influence of contact-line curvature on the evaporation of nanodroplets from solid substrates
,”
Phys. Rev. Lett.
113
,
046101
(
2014
).
12.
H.
Fan
, “
Liquid droplet spreading with line tension effect
,”
J. Phys.: Condens. Matter
18
,
4481
(
2006
).
13.
G.
Paneru
,
B. M.
Law
,
K.
Ibi
,
B.
Ushijima
,
B. N.
Flanders
,
M.
Aratono
, and
H.
Matsubara
, “
Liquid droplet coalescence and fragmentation at the aqueous–air surface
,”
Langmuir
31
,
132
139
(
2015
).
14.
A. S.
Aronson
,
V.
Bergeron
,
M. E.
Fagan
, and
C. J.
Radke
, “
The influence of disjoining pressure on foam stability and flow in porous media
,”
Colloids Surf., A
83
,
109
120
(
1994
).
15.
R.
Rosso
and
E. G.
Virga
, “
Sign of line tension in liquid bridge stability
,”
Phys. Rev. E
70
,
031603
(
2004
).
16.
M.
Brinkmann
,
J.
Kierfeld
, and
R.
Lipowsky
, “
Stability of liquid channels or filaments in the presence of line tension
,”
J. Phys.: Condens. Matter
17
,
2349
(
2005
).
17.
L.
Guzzardi
,
R.
Rosso
, and
E. G.
Virga
, “
Residual stability of sessile droplets with negative line tension
,”
Phys. Rev. E
73
,
021602
(
2006
).
18.
S.
Mechkov
,
G.
Oshanin
,
M.
Rauscher
,
M.
Brinkmann
,
A. M.
Cazabat
, and
S.
Dietrich
, “
Contact line stability of ridges and drops
,”
Europhys. Lett.
80
,
66002
(
2007
).
19.
L.
Guillemot
,
T.
Biben
,
A.
Galarneau
,
G.
Vigier
, and
É.
Charlaix
, “
Activated drying in hydrophobic nanopores and the line tension of water
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
19557
19562
(
2012
).
20.
S.
Sharma
and
P. G.
Debenedetti
, “
Evaporation rate of water in hydrophobic confinement
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
4365
4370
(
2012
).
21.
J. O.
Indekeu
, “
Line tension at wetting
,”
Int. J. Mod. Phys. B
8
,
309
345
(
1994
).
22.
A.
Amirfazli
and
A. W.
Neumann
, “
Status of the three-phase line tension: A review
,”
Adv. Colloid Interface Sci.
110
,
121
141
(
2004
).
23.
L.-O.
Heim
and
E.
Bonaccurso
, “
Measurement of line tension on droplets in the submicrometer range
,”
Langmuir
29
,
14147
14153
(
2013
).
24.
J.
Drelich
and
J. D.
Miller
, “
The line/pseudo-line tension in three-phase systems
,”
Part. Sci. Technol.
10
,
1
20
(
1992
).
25.
D.
Duncan
,
D.
Li
,
J.
Gaydos
, and
A. W.
Neumann
, “
Correlation of line tension and solid-liquid interfacial tension from the measurement of drop size dependence of contact angles
,”
J. Colloid Interface Sci.
169
,
256
261
(
1995
).
26.
T.
Pompe
and
S.
Herminghaus
, “
Three-phase contact line energetics from nanoscale liquid surface topographies
,”
Phys. Rev. Lett.
85
,
1930
(
2000
).
27.
D. A. L.
Leelamanie
and
J.
Karube
, “
Drop size dependence of soil-water contact angle in relation to the droplet geometry and line tension
,”
Soil Sci. Plant Nutr.
58
,
675
683
(
2012
).
28.
B. M.
Law
,
S. P.
McBride
,
J. Y.
Wang
,
H. S.
Wi
,
G.
Paneru
,
S.
Betelu
,
B.
Ushijima
,
Y.
Takata
,
B.
Flanders
,
F.
Bresme
,
H.
Matsubara
,
T.
Takiue
, and
M.
Aratono
, “
Line tension and its influence on droplets and particles at surfaces
,”
Prog. Surf. Sci.
92
,
1
39
(
2017
).
29.
H.
Matsubara
,
J.
Otsuka
, and
B. M.
Law
, “
Finite-size and solvent dependent line tension effects for nanoparticles at the air–liquid surface
,”
Langmuir
34
,
331
340
(
2018
).
30.
B.
Zhao
,
S.
Luo
,
E.
Bonaccurso
,
G. K.
Auernhammer
,
X.
Deng
,
Z.
Li
, and
L.
Chen
, “
Resolving the apparent line tension of sessile droplets and understanding its sign change at a critical wetting angle
,”
Phys. Rev. Lett.
123
,
094501
(
2019
).
31.
J. O.
Indekeu
, “
Line tension near the wetting transition: Results from an interface displacement model
,”
Physica A
183
,
439
461
(
1992
).
32.
T.
Getta
and
S.
Dietrich
, “
Line tension between fluid phases and a substrate
,”
Phys. Rev. E
57
,
655
(
1998
).
33.
L.
Schimmele
,
M.
Napiórkowski
, and
S.
Dietrich
, “
Conceptual aspects of line tensions
,”
J. Chem. Phys.
127
,
164715
(
2007
).
34.
J. Y.
Wang
,
S.
Betelu
, and
B. M.
Law
, “
Line tension effects near first-order wetting transitions
,”
Phys. Rev. Lett.
83
,
3677
(
1999
).
35.
J. K.
Berg
,
C. M.
Weber
, and
H.
Riegler
, “
Impact of negative line tension on the shape of nanometer-size sessile droplets
,”
Phys. Rev. Lett.
105
,
076103
(
2010
).
36.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
, “
On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
,”
J. Phys. Chem. B
107
,
1345
1352
(
2003
).
37.
J.
Zhang
,
P.
Wang
,
M. K.
Borg
,
J. M.
Reese
, and
D.
Wen
, “
A critical assessment of the line tension determined by the modified Young’s equation
,”
Phys. Fluids
30
,
082003
(
2018
).
38.
A.
Marmur
and
B.
Krasovitski
, “
Line tension on curved surfaces: Liquid drops on solid micro-and nanospheres
,”
Langmuir
18
,
8919
8923
(
2002
).
39.
A. I.
Rusanov
,
A. K.
Shchekin
, and
D. V.
Tatyanenko
, “
The line tension and the generalized Young equation: The choice of dividing surface
,”
Colloids Surf., A
250
,
263
268
(
2004
).
40.
M.
Kanduč
, “
Going beyond the standard line tension: Size-dependent contact angles of water nanodroplets
,”
J. Chem. Phys.
147
,
174701
(
2017
).
41.
H.
Zhang
,
S.
Chen
,
Z.
Guo
,
Y.
Liu
,
F.
Bresme
, and
X.
Zhang
, “
Contact line pinning effects influence determination of the line tension of droplets adsorbed on substrates
,”
J. Phys. Chem. C
122
,
17184
17189
(
2018
).
42.
C. A.
Ward
and
J.
Wu
, “
Effect of contact line curvature on solid-fluid surface tensions without line tension
,”
Phys. Rev. Lett.
100
,
256103
(
2008
).
43.
L.
Schimmele
and
S.
Dietrich
, “
Line tension and the shape of nanodroplets
,”
Eur. Phys. J. E
30
,
427
430
(
2009
).
44.
D. V.
Tatyanenko
and
A. K.
Shchekin
, “
Comparable effects of adsorption and line tension on contact angle of a nucleated droplet on a partially wettable substrate
,”
Interfacial Phenom. Heat Transfer
5
,
113
(
2017
).
45.
M.
Kanduč
,
L.
Eixeres
,
S.
Liese
, and
R. R.
Netz
, “
Generalized line tension of water nanodroplets
,”
Phys. Rev. E
98
,
032804
(
2018
).
46.
M.
Iwamatsu
, “
A generalized Young’s equation to bridge a gap between the experimentally measured and the theoretically calculated line tensions
,”
J. Adhes. Sci. Technol.
32
,
2305
2319
(
2018
).
47.
C.-H.
Chang
and
E. I.
Franses
, “
Adsorption dynamics of surfactants at the air/water interface: A critical review of mathematical models, data, and mechanisms
,”
Colloids Surf., A
100
,
1
45
(
1995
).
48.
H.
An
,
G.
Liu
, and
V. S. J.
Craig
, “
Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces
,”
Adv. Colloid Interface Sci.
222
,
9
17
(
2015
).
49.
A.
Ponce-Torres
and
E. J.
Vega
, “
The effects of ambient impurities on the surface tension
,”
EPJ Web Conf.
114
,
02098
(
2016
).
50.
P. J.
Smith
and
P. M.
Lindley
, “
Analysis of organic contamination in semiconductor processing
,”
AIP Conf. Proc.
449
,
133
139
(
1998
).
51.
S.
Iglauer
,
A.
Salamah
,
M.
Sarmadivaleh
,
K.
Liu
, and
C.
Phan
, “
Contamination of silica surfaces: Impact on water–CO2–quartz and glass contact angle measurements
,”
Int. J. Greenhouse Gas Control
22
,
325
328
(
2014
).
52.
S.
Saraji
,
M.
Piri
, and
L.
Goual
, “
The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO2/brine/quartz systems
,”
Int. J. Greenhouse Gas Control
28
,
147
155
(
2014
).
53.
P. K.
Chow
,
E.
Singh
,
B. C.
Viana
,
J.
Gao
,
J.
Luo
,
J.
Li
,
Z.
Lin
,
A. L.
Elías
,
Y.
Shi
,
Z.
Wang
,
M.
Terrones
, and
N.
Koratkar
, “
Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates
,”
ACS Nano
9
,
3023
3031
(
2015
).
54.
A.
Gurarslan
,
S.
Jiao
,
T.-D.
Li
,
G.
Li
,
Y.
Yu
,
Y.
Gao
,
E.
Riedo
,
Z.
Xu
, and
L.
Cao
, “
Van der Waals force isolation of monolayer MoS2
,”
Adv. Mater.
28
,
10055
10060
(
2016
).
55.
Z.
Li
,
Y.
Wang
,
A.
Kozbial
,
G.
Shenoy
,
F.
Zhou
,
R.
McGinley
,
P.
Ireland
,
B.
Morganstein
,
A.
Kunkel
,
S. P.
Surwade
,
L.
Li
, and
H.
Liu
, “
Effect of airborne contaminants on the wettability of supported graphene and graphite
,”
Nat. Mater.
12
,
925
931
(
2013
).
56.
A.
Kozbial
,
Z.
Li
,
J.
Sun
,
X.
Gong
,
F.
Zhou
,
Y.
Wang
,
H.
Xu
,
H.
Liu
, and
L.
Li
, “
Understanding the intrinsic water wettability of graphite
,”
Carbon
74
,
218
225
(
2014
).
57.
Y.
Zhou
and
E. J.
Reed
, “
Microscopic origins of the variability of water contact angle with adsorbed contaminants on layered materials
,”
J. Phys. Chem. C
122
,
18520
18527
(
2018
).
58.
E. H.
Lucassen-Reynders
, “
Contact angles and adsorption on solids
,”
J. Phys. Chem.
67
,
969
972
(
1963
).
59.
F.
Staniscia
,
H. V.
Guzman
, and
M.
Kanduč
, “
Tuning contact angles of aqueous droplets on hydrophilic and hydrophobic surfaces by surfactants
,”
J. Phys. Chem. B
126
,
3374
3384
(
2022
).
60.
D.
Chandler
, “
Interfaces and the driving force of hydrophobic assembly
,”
Nature
437
,
640
647
(
2005
).
61.
H.
Singh
and
S.
Sharma
, “
Hydration of linear alkanes is governed by the small length-scale hydrophobic effect
,”
J. Chem. Theory Comput.
18
,
3805
3813
(
2022
).
62.
G.
Bleys
and
P.
Joos
, “
Adsorption kinetics of bolaform surfactants at the air/water interface
,”
J. Phys. Chem.
89
,
1027
1032
(
1985
).
63.
R.
Wang
,
L.
Cong
, and
M.
Kido
, “
Evaluation of the wettability of metal surfaces by micro-pure water by means of atomic force microscopy
,”
Appl. Surf. Sci.
191
,
74
84
(
2002
).
64.
K. L.
Sutherland
, “
The kinetics of adsorption at liquid surfaces
,”
Aust. J. Chem.
5
,
683
696
(
1952
).
65.
L.
Hao
and
D. G.
Leaist
, “
Binary mutual diffusion coefficients of aqueous alcohols. Methanol to 1-heptanol
,”
J. Chem. Eng. Data
41
,
210
213
(
1996
).
66.
S. P.
McBride
and
B. M.
Law
, “
Influence of line tension on spherical colloidal particles at liquid-vapor interfaces
,”
Phys. Rev. Lett.
109
,
196101
(
2012
).
67.
M.
Vuckovac
,
M.
Latikka
,
K.
Liu
,
T.
Huhtamäki
, and
R. H. A.
Ras
, “
Uncertainties in contact angle goniometry
,”
Soft Matter
15
,
7089
7096
(
2019
).
68.
X.
Zhang
,
Y.
Yang
,
H. H.
Ngo
,
W.
Guo
,
H.
Wen
,
X.
Wang
,
J.
Zhang
, and
T.
Long
, “
A critical review on challenges and trend of ultrapure water production process
,”
Sci. Total Environ.
785
,
147254
(
2021
).
69.
T. T.
Duignan
,
M.
Peng
,
A. V.
Nguyen
,
X. S.
Zhao
,
M. D.
Baer
, and
C. J.
Mundy
, “
Detecting the undetectable: The role of trace surfactant in the Jones-Ray effect
,”
J. Chem. Phys.
149
,
194702
(
2018
).
70.
M.
Peng
,
T. T.
Duignan
,
C. V.
Nguyen
, and
A. V.
Nguyen
, “
From surface tension to molecular distribution: Modeling surfactant adsorption at the air–water interface
,”
Langmuir
37
,
2237
2255
(
2021
).
71.
C. M.
Persson
,
P. M.
Claesson
, and
K.
Lunkenheimer
, “
Interfacial behavior of n-decyl-β-D-maltopyranoside on hydrophobic interfaces and the effect of small amounts of surface-active impurities
,”
J. Colloid Interface Sci.
251
,
182
192
(
2002
).
72.
B.
Widom
, “
Adsorption at a line of three-phase contact
,”
Colloids Surf., A
239
,
141
144
(
2004
).
73.
Y.
Uematsu
,
D. J.
Bonthuis
, and
R. R.
Netz
, “
Charged surface-active impurities at nanomolar concentration induce Jones–Ray effect
,”
J. Phys. Chem. Lett.
9
,
189
193
(
2018
).
74.
R.
Zimmermann
,
S.
Dukhin
, and
C.
Werner
, “
Electrokinetic measurements reveal interfacial charge at polymer films caused by simple electrolyte ions
,”
J. Phys. Chem. B
105
,
8544
8549
(
2001
).
75.
K.
Roger
and
B.
Cabane
, “
Why are hydrophobic/water interfaces negatively charged?
,”
Angew. Chem., Int. Ed.
51
,
5625
5628
(
2012
).
76.
V. L.
Shapovalov
,
H.
Möhwald
,
O. V.
Konovalov
, and
V.
Knecht
, “
Negligible water surface charge determined using Kelvin probe and total reflection X-ray fluorescence techniques
,”
Phys. Chem. Chem. Phys.
15
,
13991
13998
(
2013
).
77.
Y.
Uematsu
,
D. J.
Bonthuis
, and
R. R.
Netz
, “
Impurity effects at hydrophobic surfaces
,”
Curr. Opin. Electrochem.
13
,
166
173
(
2019
).
78.
W. A.
Ducker
, “
Contact angle and stability of interfacial nanobubbles
,”
Langmuir
25
,
8907
8910
(
2009
).
79.
S.
Das
,
J. H.
Snoeijer
, and
D.
Lohse
, “
Effect of impurities in description of surface nanobubbles
,”
Phys. Rev. E
82
,
056310
(
2010
).
80.
J. A.
Nicolás
and
J. M.
Vega
, “
A note on the effect of surface contamination in water wave damping
,”
J. Fluid Mech.
410
,
367
373
(
2000
).
81.
A.
Maali
,
R.
Boisgard
,
H.
Chraibi
,
Z.
Zhang
,
H.
Kellay
, and
A.
Würger
, “
Viscoelastic drag forces and crossover from no-slip to slip boundary conditions for flow near air-water interfaces
,”
Phys. Rev. Lett.
118
,
084501
(
2017
).
82.
M.
Arangalage
,
X.
Li
,
F.
Lequeux
, and
L.
Talini
, “
Dual Marangoni effects and detection of traces of surfactants
,”
Soft Matter
14
,
3378
3386
(
2018
).
You do not currently have access to this content.