In this paper, we have developed a unitary variant of a double exponential coupled cluster theory, which is capable of handling molecular strong correlation with arbitrary electronic complexity. With the Hartree–Fock determinant taken as the reference, we introduce a sequential product of parameterized unitary Ansätze. While the first unitary, containing the excitation operators, acts directly on the reference determinant, the second unitary, containing a set of rank-two, vacuum-annihilating scattering operators, has nontrivial action only on certain entangled states. We demonstrate the theoretical bottleneck of such an implementation in a classical computer, whereas the same is implemented in the hybrid quantum–classical variational quantum eigensolver framework with a reasonably shallow quantum circuit without any additional approximation. We have further introduced a number of variants of the proposed Ansatz with different degrees of sophistication by judiciously approximating the scattering operators. With a number of applications on strongly correlated molecules, we have shown that all our schemes can perform uniformly well throughout the molecular potential energy surface without significant additional implementation cost over the conventional unitary coupled cluster approach with single and double excitations.

1.
D.
Deutsch
and
R.
Jozsa
, “
Rapid solution of problems by quantum computation
,”
Proc. R. Soc. London, Ser. A
439
,
553
(
1992
).
2.
P. W.
Shor
, “
Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
,”
SIAM J. Comput.
26
,
1484
(
1997
).
3.
G.
Ortiz
,
J. E.
Gubernatis
,
E.
Knill
, and
R.
Laflamme
, “
Quantum algorithms for fermionic simulations
,”
Phys. Rev. A
64
,
022319
(
2001
).
4.
A. W.
Harrow
,
A.
Hassidim
, and
S.
Lloyd
, “
Quantum algorithm for linear systems of equations
,”
Phys. Rev. Lett.
103
,
150502
(
2009
).
5.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferová
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
,
N. P. D.
Sawaya
,
S.
Sim
,
L.
Veis
, and
A.
Aspuru-Guzik
, “
Quantum chemistry in the age of quantum computing
,”
Chem. Rev.
119
,
10856
(
2019
).
6.
S.
McArdle
,
S.
Endo
,
A.
Aspuru-Guzik
,
S. C.
Benjamin
, and
X.
Yuan
, “
Quantum computational chemistry
,”
Rev. Mod. Phys.
92
,
015003
(
2020
).
7.
D. S.
Abrams
and
S.
Lloyd
, “
Simulation of many-body Fermi systems on a universal quantum computer
,”
Phys. Rev. Lett.
79
,
2586
(
1997
).
8.
D. S.
Abrams
and
S.
Lloyd
, “
Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors
,”
Phys. Rev. Lett.
83
,
5162
(
1999
).
9.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
, “
Simulated quantum computation of molecular energies
,”
Science
309
,
1704
(
2005
).
10.
H.
Wang
,
S.
Kais
,
A.
Aspuru-Guzik
, and
M. R.
Hoffmann
, “
Quantum algorithm for obtaining the energy spectrum of molecular systems
,”
Phys. Chem. Chem. Phys.
10
,
5388
(
2008
).
11.
L.
Veis
and
J.
Pittner
, “
Quantum computing applied to calculations of molecular energies: CH2 benchmark
,”
J. Chem. Phys.
133
,
194106
(
2010
).
12.
K.
Sugisaki
,
S.
Nakazawa
,
K.
Toyota
,
K.
Sato
,
D.
Shiomi
, and
T.
Takui
, “
Quantum chemistry on quantum computers: A method for preparation of multiconfigurational wave functions on quantum computers without performing post-Hartree–Fock calculations
,”
ACS Cent. Sci.
5
,
167
(
2019
).
13.
D.
Halder
,
V. S.
Prasannaa
,
V.
Agarawal
, and
R.
Maitra
, “
Iterative quantum phase estimation with variationally prepared reference state
,”
Int. J. Quantum Chem.
e27021
(
published online
2005
).
14.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M.-H.
Yung
,
X.-Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O’Brien
, “
A variational eigenvalue solver on a photonic quantum processor
,”
Nat. Commun.
5
,
4213
(
2014
).
15.
D. J.
Griffiths
, in
Introduction to Quantum Mechanics
, 2nd ed. (
Pearson Education, Upper Saddle River, NJ
,
2005
), Chap. 7.
16.
P. J. J.
O’Malley
 et al., “
Scalable quantum simulation of molecular energies
,”
Phys. Rev. X
6
,
031007
(
2016
).
17.
J. I.
Colless
,
V. V.
Ramasesh
,
D.
Dahlen
,
M. S.
Blok
,
M. E.
Kimchi-Schwartz
,
J. R.
McClean
,
J.
Carter
,
W. A.
de Jong
, and
I.
Siddiqi
, “
Computation of molecular spectra on a quantum processor with an error-resilient algorithm
,”
Phys. Rev. X
8
,
011021
(
2018
).
18.
Y.
Shen
,
X.
Zhang
,
S.
Zhang
,
J.-N.
Zhang
,
M.-H.
Yung
, and
K.
Kim
, “
Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure
,”
Phys. Rev. A
95
,
020501
(
2017
).
19.
C.
Hempel
,
C.
Maier
,
J.
Romero
,
J.
McClean
,
T.
Monz
,
H.
Shen
,
P.
Jurcevic
,
B. P.
Lanyon
,
P.
Love
,
R.
Babbush
,
A.
Aspuru-Guzik
,
R.
Blatt
, and
C. F.
Roos
, “
Quantum chemistry calculations on a trapped-ion quantum simulator
,”
Phys. Rev. X
8
,
031022
(
2018
).
20.
C.
Kokail
,
C.
Maier
,
R.
van Bijnen
,
T.
Brydges
,
M. K.
Joshi
,
P.
Jurcevic
,
C. A.
Muschik
,
P.
Silvi
,
R.
Blatt
,
C. F.
Roos
, and
P.
Zoller
, “
Self-verifying variational quantum simulation of lattice models
,”
Nature
569
,
355
(
2019
).
21.
W.
Kutzelnigg
, “
Error analysis and improvements of coupled-cluster theory
,”
Theor. Chim. Acta
80
,
349
(
1991
).
22.
M.-H.
Yung
,
J.
Casanova
,
A.
Mezzacapo
,
J.
McClean
,
L.
Lamata
,
A.
Aspuru-Guzik
, and
E.
Solano
, “
From transistor to trapped-ion computers for quantum chemistry
,”
Sci. Rep.
4
,
3589
(
2014
).
23.
J.
Romero
,
R.
Babbush
,
J. R.
McClean
,
C.
Hempel
,
P. J.
Love
, and
A.
Aspuru-Guzik
, “
Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz
,”
Quantum Sci. Technol.
4
,
014008
(
2018
).
24.
A.
Anand
,
P.
Schleich
,
S.
Alperin-Lea
,
P. W. K.
Jensen
,
S.
Sim
,
M.
Díaz-Tinoco
,
J. S.
Kottmann
,
M.
Degroote
,
A. F.
Izmaylov
, and
A.
Aspuru-Guzik
, “
A quantum computing view on unitary coupled cluster theory
,”
Chem. Soc. Rev.
51
,
1659
(
2022
).
25.
H.
Nakatsuji
, “
Equation for the direct determination of the density matrix
,”
Phys. Rev. A
14
,
41
(
1976
).
26.
M.
Nooijen
, “
Can the eigenstates of a many-body Hamiltonian be represented exactly using a general two-body cluster expansion?
,”
Phys. Rev. Lett.
84
,
2108
(
2000
).
27.
P.
Piecuch
,
K.
Kowalski
,
P.-D.
Fan
, and
K.
Jedziniak
, “
Exactness of two-body cluster expansions in many-body quantum theory
,”
Phys. Rev. Lett.
90
,
113001
(
2003
).
28.
T.
Van Voorhis
and
M.
Head-Gordon
, “
Two-body coupled cluster expansions
,”
J. Chem. Phys.
115
,
5033
(
2001
).
29.
J.
Lee
,
W. J.
Huggins
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
Generalized unitary coupled cluster wave functions for quantum computation
,”
J. Chem. Theory Comput.
15
,
311
(
2019
).
30.
K.
Sugisaki
,
T.
Kato
,
Y.
Minato
,
K.
Okuwaki
, and
Y.
Mochizuki
, “
Variational quantum eigensolver simulations with the multireference unitary coupled cluster ansatz: A case study of the C2v quasi-reaction pathway of beryllium insertion into a H2 molecule
,”
Phys. Chem. Chem. Phys.
24
,
8439
(
2022
).
31.
H. R.
Grimsley
,
S. E.
Economou
,
E.
Barnes
, and
N. J.
Mayhall
, “
An adaptive variational algorithm for exact molecular simulations on a quantum computer
,”
Nat. Commun.
10
,
3007
(
2019
).
32.
N. P.
Bauman
and
K.
Kowalski
, “
Coupled cluster downfolding theory: Towards universal many-body algorithms for dimensionality reduction of composite quantum systems in chemistry and materials science
,”
Mater. Theory
6
,
17
(
2022
).
33.
M.
Metcalf
,
N. P.
Bauman
,
K.
Kowalski
, and
W. A.
de Jong
, “
Resource-efficient chemistry on quantum computers with the variational quantum eigensolver and the double unitary coupled-cluster approach
,”
J. Chem. Theory Comput.
16
,
6165
(
2020
).
34.
K.
Kowalski
, “
Dimensionality reduction of the many-body problem using coupled-cluster subsystem flow equations: Classical and quantum computing perspective
,”
Phys. Rev. A
104
,
032804
(
2021
).
35.
Y.
Matsuzawa
and
Y.
Kurashige
, “
Jastrow-type decomposition in quantum chemistry for low-depth quantum circuits
,”
J. Chem. Theory Comput.
16
,
944
(
2020
).
36.
M.
Motta
,
E.
Ye
,
J. R.
McClean
,
Z.
Li
,
A. J.
Minnich
,
R.
Babbush
, and
G. K.-L.
Chan
, “
Low rank representations for quantum simulation of electronic structure
,”
npj Quantum Inf.
7
,
83
(
2021
).
37.
I. O.
Sokolov
,
P. K.
Barkoutsos
,
P. J.
Ollitrault
,
D.
Greenberg
,
J.
Rice
,
M.
Pistoia
, and
I.
Tavernelli
, “
Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents?
,”
J. Chem. Phys.
152
,
124107
(
2020
).
38.
W.
Mizukami
,
K.
Mitarai
,
Y. O.
Nakagawa
,
T.
Yamamoto
,
T.
Yan
, and
Y.-y.
Ohnishi
, “
Orbital optimized unitary coupled cluster theory for quantum computer
,”
Phys. Rev. Res.
2
,
033421
(
2020
).
39.
I. G.
Ryabinkin
,
T.-C.
Yen
,
S. N.
Genin
, and
A. F.
Izmaylov
, “
Qubit coupled cluster method: A systematic approach to quantum chemistry on a quantum computer
,”
J. Chem. Theory Comput.
14
,
6317
(
2018
).
40.
B.
Peng
and
K.
Kowalski
, “
Variational quantum solver employing the PDS energy functional
,”
Quantum
5
,
473
(
2021
).
41.
N. H.
Stair
and
F. A.
Evangelista
, “
Simulating many-body systems with a projective quantum eigensolver
,”
PRX Quantum
2
,
030301
(
2021
).
42.
J.
Tilly
,
H.
Chen
,
S.
Cao
,
D.
Picozzi
,
K.
Setia
,
Y.
Li
,
E.
Grant
,
L.
Wossnig
,
I.
Rungger
,
G. H.
Booth
, and
J.
Tennyson
, “
The variational quantum eigensolver: A review of methods and best practices
,”
Phys. Rep.
986
,
1
(
2022
).
43.
R.
Maitra
,
Y.
Akinaga
, and
T.
Nakajima
, “
A coupled cluster theory with iterative inclusion of triple excitations and associated equation of motion formulation for excitation energy and ionization potential
,”
J. Chem. Phys.
147
,
074103
(
2017
).
44.
S.
Tribedi
,
A.
Chakraborty
, and
R.
Maitra
, “
Formulation of a dressed coupled-cluster method with implicit triple excitations and benchmark application to hydrogen-bonded systems
,”
J. Chem. Theory Comput.
16
,
6317
(
2020
).
45.
D.
Mukherjee
,
R. K.
Moitra
, and
A.
Mukhopadhyay
, “
Applications of a non-perturbative many-body formalism to general open-shell atomic and molecular problems: Calculation of the ground and the lowest π-π* singlet and triplet energies and the first ionization potential of trans-butadiene
,”
Mol. Phys.
33
,
955
(
1977
).
46.
A.
Mukhopadhyay
,
R. K.
Moitra
, and
D.
Mukherjee
, “
A non-perturbative open-shell theory for ionisation potential and excitation energies using HF ground state as the vacuum
,”
J. Phys. B: At. Mol. Phys.
12
,
1
(
1979
).
47.
M. A.
Haque
and
D.
Mukherjee
, “
Application of cluster expansion techniques to open shells: Calculation of difference energies
,”
J. Chem. Phys.
80
,
5058
(
1984
).
48.
I.
Lindgren
and
D.
Mukherjee
, “
On the connectivity criteria in the open-shell coupled-cluster theory for general model spaces
,”
Phys. Rep.
151
,
93
(
1987
).
49.
M.
Nooijen
and
R. J.
Bartlett
, “
A new method for excited states: Similarity transformed equation-of-motion coupled-cluster theory
,”
J. Chem. Phys.
106
,
6441
(
1997
).
50.
M.
Nooijen
and
R. J.
Bartlett
, “
Similarity transformed equation-of-motion coupled-cluster study of ionized, electron attached, and excited states of free base porphin
,”
J. Chem. Phys.
106
,
6449
(
1997
).
51.
M.
Nooijen
and
R. J.
Bartlett
, “
Similarity transformed equation-of-motion coupled-cluster theory: Details, examples, and comparisons
,”
J. Chem. Phys.
107
,
6812
(
1997
).
52.
L. Z.
Stolarczyk
and
H. J.
Monkhorst
, “
Coupled-cluster method in Fock space. I. General formalism
,”
Phys. Rev. A
32
,
725
(
1985
).
53.
L. Z.
Stolarczyk
and
H. J.
Monkhorst
, “
Coupled-cluster method in Fock space. II. Brueckner-Hartree-Fock method
,”
Phys. Rev. A
32
,
743
(
1985
).
54.
L. Z.
Stolarczyk
and
H. J.
Monkhorst
, “
Coupled-cluster method in Fock space. III. On similarity transformation of operators in Fock space
,”
Phys. Rev. A
37
,
1908
(
1988
).
55.
L.
Meissner
and
M.
Nooijen
, “
Effective and intermediate Hamiltonians obtained by similarity transformations
,”
J. Chem. Phys.
102
,
9604
(
1995
).
56.
L.
Meissner
, “
On multiple solutions of the Fock-space coupled-cluster method
,”
Chem. Phys. Lett.
255
,
244
(
1996
).
57.
L.
Meissner
, “
Fock-space coupled-cluster method in the intermediate Hamiltonian formulation: Model with singles and doubles
,”
J. Chem. Phys.
108
,
9227
(
1998
).
58.
B.
Cooper
and
P. J.
Knowles
, “
Benchmark studies of variational, unitary and extended coupled cluster methods
,”
J. Chem. Phys.
133
,
234102
(
2010
).
59.
N.
Hatano
and
M.
Suzuki
, in
Quantum Annealing and Other Optimization Methods
, Lecture Notes in Physics Vol. 679, edited by
A.
Das
and
B. K.
Chakrabarti
(
Springer
,
2005
), pp.
36
68
.
60.
F. A.
Evangelista
,
G. K.-L.
Chan
, and
G. E.
Scuseria
, “
Exact parameterization of fermionic wave functions via unitary coupled cluster theory
,”
J. Chem. Phys.
151
,
244112
(
2019
).
61.
G.
Harsha
,
T.
Shiozaki
, and
G. E.
Scuseria
, “
On the difference between variational and unitary coupled cluster theories
,”
J. Chem. Phys.
148
,
044107
(
2018
).
62.
H. R.
Grimsley
,
D.
Claudino
,
S. E.
Economou
,
E.
Barnes
, and
N. J.
Mayhall
, “
Is the trotterized UCCSD ansatz chemically well-defined?
,”
J. Chem. Theory Comput.
16
,
1
(
2020
).
63.
P. K.
Barkoutsos
,
J. F.
Gonthier
,
I.
Sokolov
,
N.
Moll
,
G.
Salis
,
A.
Fuhrer
,
M.
Ganzhorn
,
D. J.
Egger
,
M.
Troyer
,
A.
Mezzacapo
,
S.
Filipp
, and
I.
Tavernelli
, “
Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions
,”
Phys. Rev. A
98
,
022322
(
2018
).
64.
J.
Chen
,
H.-P.
Cheng
, and
J. K.
Freericks
, “
Flexibility of the factorized form of the unitary coupled cluster ansatz
,”
J. Chem. Phys.
156
,
044106
(
2022
).
65.
K.
Kowalski
and
N. P.
Bauman
, “
Sub-system quantum dynamics using coupled cluster downfolding techniques
,”
J. Chem. Phys.
152
,
244127
(
2020
).
66.
W. J.
Hehre
,
R. F.
Stewart
, and
J. A.
Pople
, “
Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals
,”
J. Chem. Phys.
51
,
2657
(
1969
).
67.
Q.
Sun
 et al., “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
68.
H.
Abraham
 et al., “
Qiskit: An open-source framework for quantum computing
,” (
2019
).
69.
J. T.
Seeley
,
M. J.
Richard
, and
P. J.
Love
, “
The Bravyi-Kitaev transformation for quantum computation of electronic structure
,”
J. Chem. Phys.
137
,
224109
(
2012
).
70.
R. H.
Byrd
,
P.
Lu
,
J.
Nocedal
, and
C.
Zhu
, “
A limited memory algorithm for bound constrained optimization
,”
SIAM J. Sci. Comput.
16
,
1190
(
1995
).
You do not currently have access to this content.