Most computational studies in chemistry and materials science are based on the use of density functional theory. Although the exact density functional is unknown, several density functional approximations (DFAs) offer a good balance of affordable computational cost and semi-quantitative accuracy for applications. The development of DFAs still continues on many fronts, and several new DFAs aiming for improved accuracy are published every year. However, the numerical behavior of these DFAs is an often-overlooked problem. In this work, we look at all 592 DFAs for three-dimensional systems available in Libxc 5.2.2 and examine the convergence of the density functional total energy based on tabulated atomic Hartree–Fock wave functions. We show that several recent DFAs, including the celebrated SCAN family of functionals, show impractically slow convergence with typically used numerical quadrature schemes, making these functionals unsuitable both for routine applications and high-precision studies, as thousands of radial quadrature points may be required to achieve sub-μEh accurate total energies for these functionals, while standard quadrature grids like the SG-3 grid only contain O(100) radial quadrature points. These results are both a warning to users to always check the sufficiency of the quadrature grid when adopting novel functionals, as well as a guideline to the theory community to develop better-behaved density functionals.

1.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
3.
U.
von Barth
, “
Basic density-functional theory—An overview
,”
Phys. Scr.
T109
,
9
(
2004
).
4.
A. D.
Becke
, “
Perspective: Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
,
18A301
(
2014
).
5.
E. S.
Kryachko
and
E. V.
Ludeña
, “
Density functional theory: Foundations reviewed
,”
Phys. Rep.
544
,
123
239
(
2014
).
6.
R. O.
Jones
, “
Density functional theory: Its origins, rise to prominence, and future
,”
Rev. Mod. Phys.
87
,
897
923
(
2015
).
7.
N.
Mardirossian
and
M.
Head-Gordon
, “
Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals
,”
Mol. Phys.
115
,
2315
2372
(
2017
).
8.
W.
Kohn
, “
Nobel Lecture: Electronic structure of matter–wave functions and density functionals
,”
Rev. Mod. Phys.
71
,
1253
1266
(
1999
).
9.
S.
Lehtola
, “
A review on non-relativistic, fully numerical electronic structure calculations on atoms and diatomic molecules
,”
Int. J. Quantum Chem.
119
,
e25968
(
2019
); arXiv:1902.01431.
10.
S. R.
Jensen
,
T.
Flå
,
D.
Jonsson
,
R. S.
Monstad
,
K.
Ruud
, and
L.
Frediani
, “
Magnetic properties with multiwavelets and DFT: The complete basis set limit achieved
,”
Phys. Chem. Chem. Phys.
18
,
21145
21161
(
2016
).
11.
S. R.
Jensen
,
S.
Saha
,
J. A.
Flores-Livas
,
W.
Huhn
,
V.
Blum
,
S.
Goedecker
, and
L.
Frediani
, “
The elephant in the room of density functional theory calculations
,”
J. Phys. Chem. Lett.
8
,
1449
1457
(
2017
); arXiv:1702.00957.
12.
S.
Lehtola
, “
Fully numerical Hartree–Fock and density functional calculations. II. Diatomic molecules
,”
Int. J. Quantum Chem.
119
,
e25944
(
2019
); arXiv:1810.11653.
13.
S.
Lehtola
, “
Fully numerical Hartree–Fock and density functional calculations. I. Atoms
,”
Int. J. Quantum Chem.
119
,
e25945
(
2019
); arXiv:1810.11651.
14.
S.
Lehtola
, “
Fully numerical calculations on atoms with fractional occupations and range-separated exchange functionals
,”
Phys. Rev. A
101
,
012516
(
2020
); arXiv:1908.02528.
15.
A.
Brakestad
,
S. R.
Jensen
,
P.
Wind
,
M.
D’Alessandro
,
L.
Genovese
,
K. H.
Hopmann
, and
L.
Frediani
, “
Static polarizabilities at the basis set limit: A benchmark of 124 species
,”
J. Chem. Theory Comput.
16
,
4874
4882
(
2020
).
16.
A.
Brakestad
,
P.
Wind
,
S. R.
Jensen
,
L.
Frediani
, and
K. H.
Hopmann
, “
Multiwavelets applied to metal–ligand interactions: Energies free from basis set errors
,”
J. Chem. Phys.
154
,
214302
(
2021
).
17.
S.
Lehtola
,
F.
Blockhuys
, and
C.
Van Alsenoy
, “
An overview of self-consistent field calculations within finite basis sets
,”
Molecules
25
,
1218
(
2020
); arXiv:1912.12029.
18.
C. C. J.
Roothaan
, “
New developments in molecular orbital theory
,”
Rev. Mod. Phys.
23
,
69
89
(
1951
).
19.
M.
Head-Gordon
and
J. A.
Pople
, “
Optimization of wave function and geometry in the finite basis Hartree–Fock method
,”
J. Phys. Chem.
92
,
3063
3069
(
1988
).
20.
M.
Ernzerhof
and
G. E.
Scuseria
, “
Kinetic energy density dependent approximations to the exchange energy
,”
J. Chem. Phys.
111
,
911
915
(
1999
).
21.
S.
Lehtola
and
M. A. L.
Marques
, “
Meta-local density functionals: A new rung on Jacob’s ladder
,”
J. Chem. Theory Comput.
17
,
943
948
(
2021
).
22.
N.
Mardirossian
and
M.
Head-Gordon
, “
Characterizing and understanding the remarkably slow basis set convergence of several Minnesota density functionals for intermolecular interaction energies
,”
J. Chem. Theory Comput.
9
,
4453
4461
(
2013
).
23.
R.
Peverati
and
D. G.
Truhlar
, “
M11-L: A local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics
,”
J. Phys. Chem. Lett.
3
,
117
124
(
2012
).
24.
S.
Schwalbe
,
K.
Trepte
, and
S.
Lehtola
, “
How good are recent density functionals for ground and excited states of one-electron systems?
,” (in press) (2022); arXiv:2208.06482 [physics.comp-ph].
25.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
26.
A. P.
Bartók
and
J. R.
Yates
, “
Regularized SCAN functional
,”
J. Chem. Phys.
150
,
161101
(
2019
); arXiv:1903.01007.
27.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Accurate and numerically efficient r2SCAN meta-generalized gradient approximation
,”
J. Phys. Chem. Lett.
11
,
8208
8215
(
2020
).
28.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Correction to ‘accurate and numerically efficient r2SCAN meta-generalized gradient approximation
,’”
J. Phys. Chem. Lett.
11
,
9248
(
2020
).
29.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Construction of meta-GGA functionals through restoration of exact constraint adherence to regularized SCAN functionals
,”
J. Chem. Phys.
156
,
034109
(
2022
).
30.
J. P.
Perdew
and
K.
Schmidt
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
20
(
2001
).
31.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
32.
P. M. W.
Gill
,
R. D.
Adamson
, and
J. A.
Pople
, “
Coulomb-attenuated exchange energy density functionals
,”
Mol. Phys.
88
,
1005
1009
(
1996
).
33.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
, “
Combining long-range configuration interaction with short-range density functionals
,”
Chem. Phys. Lett.
275
,
151
160
(
1997
).
34.
J.-D.
Chai
and
M.
Head-Gordon
, “
Systematic optimization of long-range corrected hybrid density functionals
,”
J. Chem. Phys.
128
,
084106
(
2008
).
35.
N.
Mardirossian
and
M.
Head-Gordon
, “
ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy
,”
Phys. Chem. Chem. Phys.
16
,
9904
9924
(
2014
).
36.
Y.-S.
Lin
,
G.-D.
Li
,
S.-P.
Mao
, and
J.-D.
Chai
, “
Long-range corrected hybrid density functionals with improved dispersion corrections
,”
J. Chem. Theory Comput.
9
,
263
272
(
2013
); arXiv:1211.0387.
37.
Y.
Zhang
,
X.
Xu
, and
W. A.
Goddard
, “
Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
4963
4968
(
2009
).
38.
J.
Jaramillo
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Local hybrid functionals
,”
J. Chem. Phys.
118
,
1068
1073
(
2003
).
39.
T. M.
Maier
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1378
(
2019
).
40.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
,
2547
2553
(
1988
).
41.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
, “
Achieving linear scaling in exchange-correlation density functional quadratures
,”
Chem. Phys. Lett.
257
,
213
223
(
1996
).
42.
H.
Laqua
,
J.
Kussmann
, and
C.
Ochsenfeld
, “
An improved molecular partitioning scheme for numerical quadratures in density functional theory
,”
J. Chem. Phys.
149
,
204111
(
2018
).
43.
C. W.
Murray
,
N. C.
Handy
, and
G. J.
Laming
, “
Quadrature schemes for integrals of density functional theory
,”
Mol. Phys.
78
,
997
1014
(
1993
).
44.
O.
Treutler
and
R.
Ahlrichs
, “
Efficient molecular numerical integration schemes
,”
J. Chem. Phys.
102
,
346
(
1995
).
45.
M. E.
Mura
and
P. J.
Knowles
, “
Improved radial grids for quadrature in molecular density-functional calculations
,”
J. Chem. Phys.
104
,
9848
(
1996
).
46.
M.
Krack
and
A. M.
Köster
, “
An adaptive numerical integrator for molecular integrals
,”
J. Chem. Phys.
108
,
3226
(
1998
).
47.
R.
Lindh
,
P.-Å.
Malmqvist
, and
L.
Gagliardi
, “
Molecular integrals by numerical quadrature. I. Radial integration
,”
Theor. Chem. Acc.
106
,
178
187
(
2001
).
48.
P. M. W.
Gill
and
S.-H.
Chien
, “
Radial quadrature for multiexponential integrands
,”
J. Comput. Chem.
24
,
732
740
(
2003
).
49.
V. I.
Lebedev
, “
Values of the nodes and weights of ninth to seventeenth order Gauss–Markov quadrature formulae invariant under the octahedron group with inversion
,”
USSR Comput. Math. Math. Phys.
15
,
44
51
(
1975
).
50.
V. I.
Lebedev
, “
Quadratures on a sphere
,”
USSR Comput. Math. Math. Phys.
16
,
10
24
(
1976
).
51.
V. I.
Lebedev
, “
Spherical quadrature formulas exact to orders 25–29
,”
Sib. Math. J.
18
,
99
107
(
1977
).
52.
V. I.
Lebedev
and
A. L.
Skorokhodov
, “
Quadrature formulas of orders 41, 47, and 53 for the sphere
,”
Rus. Acad. Sci. Dokl. Math.
45
,
587
592
(
1992
).
53.
V. I.
Lebedev
, “
A quadrature formula for the sphere of 59th algebraic order of accuracy
,”
Russ. Acad. Sci. Dokl. Math.
50
,
283
286
(
1995
).
54.
C.
Daul
and
S.
Daul
, “
Symmetrical ‘nonproduct’ quadrature rules for a fast calculation of multicenter integrals
,”
Int. J. Quantum Chem.
61
,
219
230
(
1997
).
55.
N. C.
Handy
and
S. F.
Boys
, “
Integration points for the reduction of boundary conditions
,”
Theor. Chim. Acta
31
,
195
200
(
1973
).
56.
J.
Lehtola
,
M.
Hakala
,
A.
Sakko
, and
K.
Hämäläinen
, “
ERKALE—A flexible program package for x-ray properties of atoms and molecules
,”
J. Comput. Chem.
33
,
1572
1585
(
2012
).
57.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
, “
The ORCA quantum chemistry program package
,”
J. Chem. Phys.
152
,
224108
(
2020
).
58.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A.
Marefat Khah
,
S.
Karbalaei Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
, “
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
,”
J. Chem. Phys.
152
,
184107
(
2020
).
59.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
PSI4 1.4: Open-source software for high-throughput quantum chemistry
,”
J. Chem. Phys.
152
,
184108
(
2020
).
60.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PYSCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
); arXiv:2002.12531.
61.
G.
Scalmani
, Gaussian, Inc., private communication (
2022
).
62.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
de Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
DePrince
,
R. A.
DiStasio
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
63.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
64.
E.
Aprà
,
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
H. J. J.
van Dam
,
Y.
Alexeev
,
J.
Anchell
,
V.
Anisimov
,
F. W.
Aquino
,
R.
Atta-Fynn
,
J.
Autschbach
,
N. P.
Bauman
,
J. C.
Becca
,
D. E.
Bernholdt
,
K.
Bhaskaran-Nair
,
S.
Bogatko
,
P.
Borowski
,
J.
Boschen
,
J.
Brabec
,
A.
Bruner
,
E.
Cauët
,
Y.
Chen
,
G. N.
Chuev
,
C. J.
Cramer
,
J.
Daily
,
M. J. O.
Deegan
,
T. H.
Dunning
,
M.
Dupuis
,
K. G.
Dyall
,
G. I.
Fann
,
S. A.
Fischer
,
A.
Fonari
,
H.
Früchtl
,
L.
Gagliardi
,
J.
Garza
,
N.
Gawande
,
S.
Ghosh
,
K.
Glaesemann
,
A. W.
Götz
,
J.
Hammond
,
V.
Helms
,
E. D.
Hermes
,
K.
Hirao
,
S.
Hirata
,
M.
Jacquelin
,
L.
Jensen
,
B. G.
Johnson
,
H.
Jónsson
,
R. A.
Kendall
,
M.
Klemm
,
R.
Kobayashi
,
V.
Konkov
,
S.
Krishnamoorthy
,
M.
Krishnan
,
Z.
Lin
,
R. D.
Lins
,
R. J.
Littlefield
,
A. J.
Logsdail
,
K.
Lopata
,
W.
Ma
,
A. V.
Marenich
,
J.
Martin del Campo
,
D.
Mejia-Rodriguez
,
J. E.
Moore
,
J. M.
Mullin
,
T.
Nakajima
,
D. R.
Nascimento
,
J. A.
Nichols
,
P. J.
Nichols
,
J.
Nieplocha
,
A.
Otero-de-la-Roza
,
B.
Palmer
,
A.
Panyala
,
T.
Pirojsirikul
,
B.
Peng
,
R.
Peverati
,
J.
Pittner
,
L.
Pollack
,
R. M.
Richard
,
P.
Sadayappan
,
G. C.
Schatz
,
W. A.
Shelton
,
D. W.
Silverstein
,
D. M. A.
Smith
,
T. A.
Soares
,
D.
Song
,
M.
Swart
,
H. L.
Taylor
,
G. S.
Thomas
,
V.
Tipparaju
,
D. G.
Truhlar
,
K.
Tsemekhman
,
T.
Van Voorhis
,
Á.
Vázquez-Mayagoitia
,
P.
Verma
,
O.
Villa
,
A.
Vishnu
,
K. D.
Vogiatzis
,
D.
Wang
,
J. H.
Weare
,
M. J.
Williamson
,
T. L.
Windus
,
K.
Woliński
,
A. T.
Wong
,
Q.
Wu
,
C.
Yang
,
Q.
Yu
,
M.
Zacharias
,
Z.
Zhang
,
Y.
Zhao
, and
R. J.
Harrison
, “
NWChem: Past, present, and future
,”
J. Chem. Phys.
152
,
184102
(
2020
).
65.
K.
Kakhiani
,
K.
Tsereteli
, and
P.
Tsereteli
, “
A program to generate a basis set adaptive radial quadrature grid for density functional theory
,”
Comput. Phys. Commun.
180
,
256
268
(
2009
).
66.
M.
Mitani
, “
An application of double exponential formula to radial quadrature grid in density functional calculation
,”
Theor. Chem. Acc.
130
,
645
669
(
2011
).
67.
M.
Mitani
and
Y.
Yoshioka
, “
Numerical integration of atomic electron density with double exponential formula for density functional calculation
,”
Theor. Chem. Acc.
131
,
1169
(
2012
).
68.
J.
Gräfenstein
and
D.
Cremer
, “
Efficient density-functional theory integrations by locally augmented radial grids
,”
J. Chem. Phys.
127
,
164113
(
2007
).
69.
A.
El-Sherbiny
and
R. A.
Poirier
, “
An evaluation of the radial part of numerical integration commonly used in DFT
,”
J. Comput. Chem.
25
,
1378
1384
(
2004
).
70.
V.
Weber
,
C.
Daul
, and
R.
Baltensperger
, “
Radial numerical integrations based on the sinc function
,”
Comput. Phys. Commun.
163
,
133
142
(
2004
).
71.
B. D.
Shizgal
,
N.
Ho
, and
X.
Yang
, “
The computation of radial integrals with nonclassical quadratures for quantum chemistry and other applications
,”
J. Math. Chem.
55
,
413
422
(
2016
).
72.
J. M.
Pérez-Jordá
,
A. D.
Becke
, and
E.
San-Fabián
, “
Automatic numerical integration techniques for polyatomic molecules
,”
J. Chem. Phys.
100
,
6520
6534
(
1994
).
73.
J.
Pérez-Jordá
,
E.
San-Fabián
, and
F.
Moscardó
, “
A simple, reliable and efficient scheme for automatic numerical integration
,”
Comput. Phys. Commun.
70
,
271
284
(
1992
).
74.
J.
Almlöf
,
K.
Faegri
, and
K.
Korsell
, “
Principles for a direct SCF approach to LCAO-MO ab initio calculations
,”
J. Comput. Chem.
3
,
385
399
(
1982
).
75.
J. H.
Van Lenthe
,
R.
Zwaans
,
H. J. J.
Van Dam
, and
M. F.
Guest
, “
Starting SCF calculations by superposition of atomic densities
,”
J. Comput. Chem.
27
,
926
932
(
2006
).
76.
S.
Lehtola
, “
Assessment of initial guesses for self-consistent field calculations. Superposition of atomic potentials: Simple yet efficient
,”
J. Chem. Theory Comput.
15
,
1593
1604
(
2019
); arXiv:1810.11659.
77.
E.
Clementi
and
C.
Roetti
, “
Roothaan–Hartree–Fock atomic wavefunctions
,”
At. Data Nucl. Data Tables
14
,
177
478
(
1974
).
78.
T.
Koga
,
H.
Tatewaki
, and
A. J.
Thakkar
, “
Roothaan–Hartree–Fock wave functions for atoms with Z ≤ 54
,”
Phys. Rev. A
47
,
4510
4512
(
1993
).
79.
T.
Koga
,
Y.
Seki
,
A. J.
Thakkar
, and
H.
Tatewaki
, “
Roothaan–Hartree–Fock wavefunctions for ions with N ≤ 54
,”
J. Phys. B: At., Mol. Opt. Phys.
26
,
2529
2532
(
1993
).
80.
T.
Koga
,
K.
Kanayama
,
S.
Watanabe
, and
A. J.
Thakkar
, “
Analytical Hartree–Fock wave functions subject to cusp and asymptotic constraints: He to Xe, Li+ to Cs+, H to I
,”
Int. J. Quantum Chem.
71
,
491
497
(
1999
).
81.
T.
Koga
,
K.
Kanayama
,
T.
Watanabe
,
T.
Imai
, and
A. J.
Thakkar
, “
Analytical Hartree–Fock wave functions for the atoms Cs to Lr
,”
Theor. Chem. Acc.
104
,
411
413
(
2000
).
82.
A.
Thakkar
, private communication (
2020
).
83.
J.
Furness
and
S.
Lehtola
, “
AtomicOrbitals—A Python module implementing the evaluation of accurate Hartree–Fock orbitals and the resulting electron densities for atoms under spherical symmetry
,” https://github.com/JFurness1/AtomicOrbitals/ (accessed on 11 April 2022).
84.
F.
Bloch
, “
Bemerkung zur elektronentheorie des ferromagnetismus und der elektrischen leitfähigkeit
,”
Z. Phys.
57
,
545
555
(
1929
).
85.
P. A. M.
Dirac
, “
Note on exchange phenomena in the Thomas atom
,”
Math. Proc. Cambridge Philos. Soc.
26
,
376
385
(
1930
).
86.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
87.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
88.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
89.
J. P.
Perdew
,
J.
Tao
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Meta-generalized gradient approximation: Explanation of a realistic nonempirical density functional
,”
J. Chem. Phys.
120
,
6898
6911
(
2004
).
90.
T.
Aschebrock
and
S.
Kümmel
, “
Ultranonlocality and accurate band gaps from a meta-generalized gradient approximation
,”
Phys. Rev. Res.
1
,
033082
(
2019
).
91.
J. T.
Margraf
,
C.
Kunkel
, and
K.
Reuter
, “
Towards density functional approximations from coupled cluster correlation energy densities
,”
J. Chem. Phys.
150
,
244116
(
2019
).
92.
E.
Fabiano
,
P. E.
Trevisanutto
,
A.
Terentjevs
, and
L. A.
Constantin
, “
Generalized gradient approximation correlation energy functionals based on the uniform electron gas with gap model
,”
J. Chem. Theory Comput.
10
,
2016
2026
(
2014
); arXiv:1404.3484.
93.
P. M. W.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
, “
A standard grid for density functional calculations
,”
Chem. Phys. Lett.
209
,
506
512
(
1993
).
94.
S.-H.
Chien
and
P. M. W.
Gill
, “
SG-0: A small standard grid for DFT quadrature on large systems
,”
J. Comput. Chem.
27
,
730
739
(
2006
).
95.
S.
Dasgupta
and
J. M.
Herbert
, “
Standard grids for high-precision integration of modern density functionals: SG-2 and SG-3
,”
J. Comput. Chem.
38
,
869
882
(
2017
).
96.
M.
Gell-Mann
and
K. A.
Brueckner
, “
Correlation energy of an electron gas at high density
,”
Phys. Rev.
106
,
364
368
(
1957
).
97.
R. G.
Gordon
and
Y. S.
Kim
, “
Theory for the forces between closed-shell atoms and molecules
,”
J. Chem. Phys.
56
,
3122
3133
(
1972
).
98.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
99.
R. H.
Hertwig
and
W.
Koch
, “
On the parameterization of the local correlation functional. What is Becke-3-LYP?
,”
Chem. Phys. Lett.
268
,
345
351
(
1997
).
100.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
101.
G.
Ortiz
and
P.
Ballone
, “
Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas
,”
Phys. Rev. B
50
,
1391
1405
(
1994
).
102.
G.
Ortiz
and
P.
Ballone
, “
Erratum: Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas [Phys. Rev. B 50, 1391 (1994)]
,”
Phys. Rev. B
56
,
9970
(
1997
).
103.
S.
Liu
and
R. G.
Parr
, “
Expansions of the correlation-energy density functional Ec[ρ] and its kinetic-energy component Tc[ρ] in terms of homogeneous functionals
,”
Phys. Rev. A
53
,
2211
2219
(
1996
).
104.
E.
Proynov
and
J.
Kong
, “
Analytic form of the correlation energy of the uniform electron gas
,”
Phys. Rev. A
79
,
014103
(
2009
).
105.
F.
Herman
,
J. P.
Van Dyke
, and
I. B.
Ortenburger
, “
Improved statistical exchange approximation for inhomogeneous many-electron systems
,”
Phys. Rev. Lett.
22
,
807
811
(
1969
).
106.
F.
Herman
,
I. B.
Ortenburger
, and
J. P.
Van Dyke
, “
A method for improving the physical realism of first-principles band structure calculations
,”
Int. J. Quantum Chem.
4
,
827
846
(
1970
).
107.
A.
Meyer
,
G.-c.
Wang
, and
H.
Young
, “
The von Weizsäcker coefficient in density functional theory
,”
Z. Naturforsch., A
31
,
898
903
(
1976
).
108.
D. C.
Langreth
and
M. J.
Mehl
, “
Easily implementable nonlocal exchange-correlation energy functional
,”
Phys. Rev. Lett.
47
,
446
450
(
1981
).
109.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
8824
(
1986
).
110.
D. J.
Lacks
and
R. G.
Gordon
, “
Pair interactions of rare-gas atoms as a test of exchange-energy-density functionals in regions of large density gradients
,”
Phys. Rev. A
47
,
4681
4690
(
1993
).
111.
M.
Filatov
and
W.
Thiel
, “
A new gradient-corrected exchange-correlation density functional
,”
Mol. Phys.
91
,
847
860
(
1997
).
112.
M.
Filatov
and
W.
Thiel
, “
A nonlocal correlation energy density functional from a Coulomb hole model
,”
Int. J. Quantum Chem.
62
,
603
616
(
1997
).
113.
M.
Ernzerhof
and
J. P.
Perdew
, “
Generalized gradient approximation to the angle- and system-averaged exchange hole
,”
J. Chem. Phys.
109
,
3313
3320
(
1998
).
114.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
(
2003
).
115.
J.
Heyd
and
G. E.
Scuseria
, “
Assessment and validation of a screened Coulomb hybrid density functional
,”
J. Chem. Phys.
120
,
7274
7280
(
2004
).
116.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Erratum: ‘Hybrid functionals based on a screened Coulomb potential’ [J. Chem. Phys. 118, 8207 (2003)]
,”
J. Chem. Phys.
124
,
219906
(
2006
).
117.
T. M.
Henderson
,
A. F.
Izmaylov
,
G.
Scalmani
, and
G. E.
Scuseria
, “
Can short-range hybrids describe long-range-dependent properties?
,”
J. Chem. Phys.
131
,
044108
(
2009
).
118.
A. T. B.
Gilbert
and
P. M. W.
Gill
, “
Decomposition of exchange-correlation energies
,”
Chem. Phys. Lett.
312
,
511
521
(
1999
).
119.
T.
Tsuneda
,
T.
Suzumura
, and
K.
Hirao
, “
A new one-parameter progressive Colle–Salvetti-type correlation functional
,”
J. Chem. Phys.
110
,
10664
10678
(
1999
).
120.
T.
Tsuneda
,
T.
Suzumura
, and
K.
Hirao
, “
A reexamination of exchange energy functionals
,”
J. Chem. Phys.
111
,
5656
5667
(
1999
).
121.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
46
,
6671
6687
(
1992
).
122.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
48
,
4978
(
1993
).
123.
T. M.
Henderson
,
B. G.
Janesko
, and
G. E.
Scuseria
, “
Generalized gradient approximation model exchange holes for range-separated hybrids
,”
J. Chem. Phys.
128
,
194105
(
2008
).
124.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
125.
E.
Weintraub
,
T. M.
Henderson
, and
G. E.
Scuseria
, “
Long-range-corrected hybrids based on a new model exchange hole
,”
J. Chem. Theory Comput.
5
,
754
762
(
2009
).
126.
P.
Haas
,
F.
Tran
,
P.
Blaha
, and
K.
Schwarz
, “
Construction of an optimal GGA functional for molecules and solids
,”
Phys. Rev. B
83
,
205117
(
2011
).
127.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
, “
Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals
,”
Phys. Rev. B
59
,
7413
7421
(
1999
).
128.
Z.
Wu
and
R. E.
Cohen
, “
More accurate generalized gradient approximation for solids
,”
Phys. Rev. B
73
,
235116
(
2006
).
129.
Z. M.
Sparrow
,
B. G.
Ernst
,
T. K.
Quady
, and
R. A.
DiStasio
, “
Uniting nonempirical and empirical density functional approximation strategies using constraint-based regularization
,”
J. Phys. Chem. Lett.
13
,
6896
6904
(
2022
).
130.
J.
Wellendorff
,
K. T.
Lundgaard
,
A.
Møgelhøj
,
V.
Petzold
,
D. D.
Landis
,
J. K.
Nørskov
,
T.
Bligaard
, and
K. W.
Jacobsen
, “
Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation
,”
Phys. Rev. B
85
,
235149
(
2012
).
131.
A. D.
Becke
, “
Thermochemical tests of a kinetic-energy dependent exchange-correlation approximation
,”
Int. J. Quantum Chem.
52
,
625
632
(
1994
).
132.
A. D.
Becke
, “
A new inhomogeneity parameter in density-functional theory
,”
J. Chem. Phys.
109
,
2092
2098
(
1998
).
133.
P.
഑emmer
and
P. J.
Knowles
, “
Exchange energy in Kohn–Sham density-functional theory
,”
Phys. Rev. A
51
,
3571
3575
(
1995
).
134.
M.
Filatov
and
W.
Thiel
, “
Exchange-correlation density functional beyond the gradient approximation
,”
Phys. Rev. A
57
,
189
199
(
1998
).
135.
J.
Rey
and
A.
Savin
, “
Virtual space level shifting and correlation energies
,”
Int. J. Quantum Chem.
69
,
581
590
(
1998
).
136.
S.
Kurth
,
J. P.
Perdew
, and
P.
Blaha
, “
Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs
,”
Int. J. Quantum Chem.
75
,
889
909
(
1999
).
137.
J. B.
Krieger
,
J.
Chen
, and
S.
Kurth
, “
Construction and application of an accurate self-interaction-corrected correlation energy functional based on an electron gas with a gap
,”
AIP Conf. Proc.
577
,
48
69
(
2001
).
138.
J.
Toulouse
,
A.
Savin
, and
C.
Adamo
, “
Validation and assessment of an accurate approach to the correlation problem in density functional theory: The Kriger–Chen–Iafrate–Savin model
,”
J. Chem. Phys.
117
,
10465
10473
(
2002
).
139.
L. A.
Constantin
,
E.
Fabiano
, and
F. D.
Sala
, “
Semilocal dynamical correlation with increased localization
,”
Phys. Rev. B
86
,
035130
(
2012
).
140.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
L. A.
Constantin
, and
J.
Sun
, “
Workhorse semilocal density functional for condensed matter physics and quantum chemistry
,”
Phys. Rev. Lett.
103
,
026403
(
2009
).
141.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
L. A.
Constantin
, and
J.
Sun
, “
Erratum: Workhorse semilocal density functional for condensed matter physics and quantum chemistry [Phys. Rev. Lett. 103, 026403 (2009)]
,”
Phys. Rev. Lett.
106
,
179902
(
2011
).
142.
J.
Tao
and
Y.
Mo
, “
Accurate semilocal density functional for condensed-matter physics and quantum chemistry
,”
Phys. Rev. Lett.
117
,
073001
(
2016
).
143.
S.
Jana
,
K.
Sharma
, and
P.
Samal
, “
Improving the performance of Tao–Mo non-empirical density functional with broader applicability in quantum chemistry and materials science
,”
J. Phys. Chem. A
123
,
6356
6369
(
2019
).
144.
A. C.
Cancio
and
M. Y.
Chou
, “
Beyond the local approximation to exchange and correlation: The role of the Laplacian of the density in the energy density of Si
,”
Phys. Rev. B
74
,
081202
(
2006
).
145.
A. D.
Becke
and
M. R.
Roussel
, “
Exchange holes in inhomogeneous systems: A coordinate-space model
,”
Phys. Rev. A
39
,
3761
3767
(
1989
).
146.
E.
Proynov
,
Z.
Gan
, and
J.
Kong
, “
Analytical representation of the Becke–Roussel exchange functional
,”
Chem. Phys. Lett.
455
,
103
109
(
2008
).
147.
P.-F.
Loos
, “
Exchange functionals based on finite uniform electron gases
,”
J. Chem. Phys.
146
,
114108
(
2017
).
148.
B.
Patra
,
S.
Jana
,
L. A.
Constantin
, and
P.
Samal
, “
Relevance of the Pauli kinetic energy density for semilocal functionals
,”
Phys. Rev. B
100
,
155140
(
2019
).
149.
S.
Jana
,
S. K.
Behera
,
S.
Śmiga
,
L. A.
Constantin
, and
P.
Samal
, “
Accurate density functional made more versatile
,”
J. Chem. Phys.
155
,
024103
(
2021
).
150.
A.
Patra
,
S.
Jana
, and
P.
Samal
, “
A way of resolving the order-of-limit problem of Tao–Mo semilocal functional
,”
J. Chem. Phys.
153
,
184112
(
2020
).
151.
B.
Patra
,
S.
Jana
,
L. A.
Constantin
, and
P.
Samal
, “
Efficient band gap prediction of semiconductors and insulators from a semilocal exchange-correlation functional
,”
Phys. Rev. B
100
,
045147
(
2019
).
152.
K.
Brown
,
Y.
Maimaiti
,
K.
Trepte
,
T.
Bligaard
, and
J.
Voss
, “
MCML: Combining physical constraints with experimental data for a multi-purpose meta-generalized gradient approximation
,”
J. Comput. Chem.
42
,
2004
2013
(
2021
).
153.
C. H.
Hodges
, “
Quantum corrections to the Thomas–Fermi approximation—The Kirzhnits method
,”
Can. J. Phys.
51
,
1428
1437
(
1973
).
154.
J. P.
Perdew
and
L. A.
Constantin
, “
Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy
,”
Phys. Rev. B
75
,
155109
(
2007
).
155.
D.
Mejia-Rodriguez
and
S. B.
Trickey
, “
Deorbitalization strategies for meta-generalized-gradient-approximation exchange-correlation functionals
,”
Phys. Rev. A
96
,
052512
(
2017
).
156.
V. V.
Karasiev
,
R. S.
Jones
,
S. B.
Trickey
, and
F. E.
Harris
, “
Properties of constraint-based single-point approximate kinetic energy functionals
,”
Phys. Rev. B
80
,
245120
(
2009
).
157.
A. C.
Cancio
,
D.
Stewart
, and
A.
Kuna
, “
Visualization and analysis of the Kohn–Sham kinetic energy density and its orbital-free description in molecules
,”
J. Chem. Phys.
144
,
084107
(
2016
).
158.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
, “
Semilocal Pauli–Gaussian kinetic functionals for orbital-free density functional theory calculations of solids
,”
J. Phys. Chem. Lett.
9
,
4385
4390
(
2018
).
159.
J.
Sun
,
B.
Xiao
, and
A.
Ruzsinszky
, “
Communication: Effect of the orbital-overlap dependence in the meta generalized gradient approximation
,”
J. Chem. Phys.
137
,
051101
(
2012
); arXiv:1203.2308v1.
160.
J.
Sun
,
R.
Haunschild
,
B.
Xiao
,
I. W.
Bulik
,
G. E.
Scuseria
, and
J. P.
Perdew
, “
Semilocal and hybrid meta-generalized gradient approximations based on the understanding of the kinetic-energy-density dependence
,”
J. Chem. Phys.
138
,
044113
(
2013
).
161.
J.
Sun
,
J. P.
Perdew
, and
A.
Ruzsinszky
, “
Semilocal density functional obeying a strongly tightened bound for exchange
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
685
689
(
2015
).
162.
N. A. W.
Holzwarth
,
M.
Torrent
,
J.-B.
Charraud
, and
M.
Côté
, “
Cubic spline solver for generalized density functional treatments of atoms and generation of atomic datasets for use with exchange-correlation functionals including meta-GGA
,”
Phys. Rev. B
105
,
125144
(
2022
).
163.
D.
Mejia-Rodriguez
and
S. B.
Trickey
, “
Deorbitalized meta-GGA exchange-correlation functionals in solids
,”
Phys. Rev. B
98
,
115161
(
2018
).
164.
D.
Mejía-Rodríguez
and
S. B.
Trickey
, “
Meta-GGA performance in solids at almost GGA cost
,”
Phys. Rev. B
102
,
121109
(
2020
).
165.
J. F.
Dobson
, “
Interpretation of the Fermi hole curvature
,”
J. Chem. Phys.
94
,
4328
4333
(
1991
).
166.
J.
Gräfenstein
,
D.
Izotov
, and
D.
Cremer
, “
Avoiding singularity problems associated with meta-GGA (generalized gradient approximation) exchange and correlation functionals containing the kinetic energy density
,”
J. Chem. Phys.
127
,
214103
(
2007
).
167.
Y.
Zhao
and
D. G.
Truhlar
, “
Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions
,”
J. Chem. Theory Comput.
4
,
1849
1868
(
2008
).
168.
J. W.
Furness
and
J.
Sun
, “
Enhancing the efficiency of density functionals with an improved iso-orbital indicator
,”
Phys. Rev. B
99
,
041119
(
2019
); arXiv:1805.11707.
169.
E. R.
Johnson
,
A. D.
Becke
,
C. D.
Sherrill
, and
G. A.
DiLabio
, “
Oscillations in meta-generalized-gradient approximation potential energy surfaces for dispersion-bound complexes
,”
J. Chem. Phys.
131
,
034111
(
2009
).
170.
S. E.
Wheeler
and
K. N.
Houk
, “
Integration grid errors for meta-GGA-predicted reaction energies: Origin of grid errors for the M06 suite of functionals
,”
J. Chem. Theory Comput.
6
,
395
404
(
2010
).
171.
S. P.
Sitkiewicz
,
R.
Zaleśny
,
E.
Ramos-Cordoba
,
J. M.
Luis
, and
E.
Matito
, “
How reliable are modern density functional approximations to simulate vibrational spectroscopies?
,”
J. Phys. Chem. Lett.
13
,
5963
5968
(
2022
).

Supplementary Material

You do not currently have access to this content.