We study the performance of spin-component-scaled second-order Møller–Plesset perturbation theory (SCS-MP2) for the prediction of the lattice constant, bulk modulus, and cohesive energy of 12 simple, three-dimensional covalent and ionic semiconductors and insulators. We find that SCS-MP2 and the simpler scaled opposite-spin MP2 (SOS-MP2) yield predictions that are significantly improved over the already good performance of MP2. Specifically, when compared to experimental values with zero-point vibrational corrections, SCS-MP2 (SOS-MP2) yields mean absolute errors of 0.015 (0.017) Å for the lattice constant, 3.8 (3.7) GPa for the bulk modulus, and 0.06 (0.08) eV for the cohesive energy, which are smaller than those of leading density functionals by about a factor of two or more. We consider a reparameterization of the spin-scaling parameters and find that the optimal parameters for these solids are very similar to those already in common use in molecular quantum chemistry, suggesting good transferability and reliable future applications to surface chemistry on insulators.

1.
S.
Hirata
,
R.
Podeszwa
,
M.
Tobita
, and
R. J.
Bartlett
, “
Coupled-cluster singles and doubles for extended systems
,”
J. Chem. Phys.
120
,
2581
2592
(
2004
).
2.
A.
Grüneis
,
G. H.
Booth
,
M.
Marsman
,
J.
Spencer
,
A.
Alavi
, and
G.
Kresse
, “
Natural orbitals for wave function based correlated calculations using a plane wave basis set
,”
J. Chem. Theory Comput.
7
,
2780
2785
(
2011
).
3.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
, “
Towards an exact description of electronic wavefunctions in real solids
,”
Nature
493
,
365
(
2013
).
4.
A.
Grüneis
, “
A coupled cluster and Møller-Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal
,”
J. Chem. Phys.
143
,
102817
(
2015
).
5.
J.
McClain
,
Q.
Sun
,
G. K.-L.
Chan
, and
T. C.
Berkelbach
, “
Gaussian-based coupled-cluster theory for the ground-state and band structure of solids
,”
J. Chem. Theory Comput.
13
,
1209
1218
(
2017
).
6.
T.
Tsatsoulis
,
F.
Hummel
,
D.
Usvyat
,
M.
Schütz
,
G. H.
Booth
,
S. S.
Binnie
,
M. J.
Gillan
,
D.
Alfè
,
A.
Michaelides
, and
A.
Grüneis
, “
A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface
,”
J. Chem. Phys.
146
,
204108
(
2017
).
7.
T.
Gruber
,
K.
Liao
,
T.
Tsatsoulis
,
F.
Hummel
, and
A.
Grüneis
, “
Applying the coupled-cluster ansatz to solids and surfaces in the thermodynamic limit
,”
Phys. Rev. X
8
,
021043
(
2018
).
8.
T.
Gruber
and
A.
Grüneis
, “
Ab initio calculations of carbon and boron nitride allotropes and their structural phase transitions using periodic coupled cluster theory
,”
Phys. Rev. B
98
,
134108
(
2018
).
9.
I. Y.
Zhang
and
A.
Grüneis
, “
Coupled cluster theory in materials science
,”
Front. Mater.
6
,
123
(
2019
).
10.
Y.
Gao
,
Q.
Sun
,
J. M.
Yu
,
M.
Motta
,
J.
McClain
,
A. F.
White
,
A. J.
Minnich
, and
G. K.-L.
Chan
, “
Electronic structure of bulk manganese oxide and nickel oxide from coupled cluster theory
,”
Phys. Rev. B
101
,
165138
(
2020
).
11.
M.
Nusspickel
and
G. H.
Booth
, “
Systematic improvability in quantum embedding for real materials
,”
Phys. Rev. X
12
,
011046
(
2022
).
12.
P. Y.
Ayala
,
K. N.
Kudin
, and
G. E.
Scuseria
, “
Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems
,”
J. Chem. Phys.
115
,
9698
9707
(
2001
).
13.
S.
Hirata
and
T.
Shimazaki
, “
Fast second-order many-body perturbation method for extended systems
,”
Phys. Rev. B
80
,
085118
(
2009
).
14.
M.
Marsman
,
A.
Grüneis
,
J.
Paier
, and
G.
Kresse
, “
Second-order Møller–Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set
,”
J. Chem. Phys.
130
,
184103
(
2009
).
15.
A.
Grüneis
,
M.
Marsman
, and
G.
Kresse
, “
Second-order Møller–Plesset perturbation theory applied to extended systems. II. Structural and energetic properties
,”
J. Chem. Phys.
133
,
074107
(
2010
).
16.
D.
Usvyat
,
L.
Maschio
,
C.
Pisani
, and
M.
Schütz
, “
Second order local Møller-Plesset perturbation theory for periodic systems: The CRYSCOR code
,”
Z. Phys. Chem.
224
,
441
454
(
2010
).
17.
L.
Maschio
,
D.
Usvyat
,
M.
Schütz
, and
B.
Civalleri
, “
Periodic local Møller–Plesset second order perturbation theory method applied to molecular crystals: Study of solid NH3 and CO2 using extended basis sets
,”
J. Chem. Phys.
132
,
134706
(
2010
).
18.
M.
Katouda
and
S.
Nagase
, “
Application of second-order Møller–Plesset perturbation theory with resolution-of-identity approximation to periodic systems
,”
J. Chem. Phys.
133
,
184103
(
2010
).
19.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
, “
Second-order Møller–Plesset perturbation theory in the condensed phase: An efficient and massively parallel Gaussian and plane waves approach
,”
J. Chem. Theory Comput.
8
,
4177
4188
(
2012
).
20.
F.
Göltl
,
A.
Grüneis
,
T.
Bučko
, and
J.
Hafner
, “
Van der Waals interactions between hydrocarbon molecules and zeolites: Periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory
,”
J. Chem. Phys.
137
,
114111
(
2012
).
21.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
, “
Electron correlation in the condensed phase from a resolution of identity approach based on the Gaussian and plane waves scheme
,”
J. Chem. Theory Comput.
9
,
2654
2671
(
2013
).
22.
T.
Schäfer
,
B.
Ramberger
, and
G.
Kresse
, “
Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis
,”
J. Chem. Phys.
146
,
104101
(
2017
).
23.
S. J.
Bintrim
,
T. C.
Berkelbach
, and
H.-Z.
Ye
, “
Integral-direct Hartree-Fock and Moller-Plesset perturbation theory for periodic systems with density fitting: Application to the benzene crystal
,” arXiv:2206.01801.
24.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
25.
S.
Grimme
, “
Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel-and antiparallel-spin pair correlation energies
,”
J. Chem. Phys.
118
,
9095
9102
(
2003
).
26.
I.
Hyla-Kryspin
and
S.
Grimme
, “
Comprehensive study of the thermochemistry of first-row transition metal compounds by spin component scaled MP2 and MP3 methods
,”
Organometallics
23
,
5581
5592
(
2004
).
27.
S.
Grimme
, “
Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods
,”
J. Phys. Chem. A
109
,
3067
3077
(
2005
).
28.
J.
Antony
and
S.
Grimme
, “
Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?
,”
J. Phys. Chem. A
111
,
4862
4868
(
2007
).
29.
T.
Takatani
and
C. D.
Sherrill
, “
Performance of spin-component-scaled Møller–Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions
,”
Phys. Chem. Chem. Phys.
9
,
6106
6114
(
2007
).
30.
R. A.
Distasio
, Jr.
and
M.
Head-Gordon
, “
Optimized spin-component scaled second-order Møller-Plesset perturbation theory for intermolecular interaction energies
,”
Mol. Phys.
105
,
1073
1083
(
2007
).
31.
S.
Kossmann
and
F.
Neese
, “
Correlated ab initio spin densities for larger molecules: Orbital-optimized spin-component-scaled MP2 method
,”
J. Phys. Chem. A
114
,
11768
11781
(
2010
).
32.
S.
Grimme
,
L.
Goerigk
, and
R. F.
Fink
, “
Spin-component-scaled electron correlation methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
886
906
(
2012
).
33.
M.
Steinmetz
and
S.
Grimme
, “
Benchmark study of the performance of density functional theory for bond activations with (Ni,Pd)-based transition-metal catalysts
,”
ChemistryOpen
2
,
115
124
(
2013
).
34.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
, “
Scaled opposite-spin second order Møller–Plesset correlation energy: An economical electronic structure method
,”
J. Chem. Phys.
121
,
9793
9802
(
2004
).
35.
J.
Rigby
and
E. I.
Izgorodina
, “
New SCS- and SOS-MP2 coefficients fitted to semi-coulombic systems
,”
J. Chem. Theory Comput.
10
,
3111
3122
(
2014
).
36.
S.
Tan
,
S. B.
Acevedo
, and
E. I.
Izgorodina
, “
Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species
,”
J. Chem. Phys.
146
,
064108
(
2017
).
37.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2017
).
38.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
39.
M. C.
Bennett
,
C. A.
Melton
,
A.
Annaberdiyev
,
G.
Wang
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials for correlated calculations
,”
J. Chem. Phys.
147
,
224106
(
2017
).
40.
M. C.
Bennett
,
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 2nd row elements
,”
J. Chem. Phys.
149
,
104108
(
2018
).
41.
Q.
Sun
,
T. C.
Berkelbach
,
J. D.
McClain
, and
G. K.-L.
Chan
, “
Gaussian and plane-wave mixed density fitting for periodic systems
,”
J. Chem. Phys.
147
,
164119
(
2017
).
42.
L. E.
Daga
,
B.
Civalleri
, and
L.
Maschio
, “
Gaussian basis sets for crystalline solids: All-purpose basis set libraries vs system-specific optimizations
,”
J. Chem. Theory Comput.
16
,
2192
2201
(
2020
).
43.
J.
Lee
,
X.
Feng
,
L. A.
Cunha
,
J. F.
Gonthier
,
E.
Epifanovsky
, and
M.
Head-Gordon
, “
Approaching the basis set limit in Gaussian-orbital-based periodic calculations with transferability: Performance of pure density functionals for simple semiconductors
,”
J. Chem. Phys.
155
,
164102
(
2021
).
44.
H.-Z.
Ye
and
T. C.
Berkelbach
, “
Correlation-consistent Gaussian basis sets for solids made simple
,”
J. Chem. Theory Comput.
18
,
1595
1606
(
2022
).
45.
J.
Paier
,
R.
Hirschl
,
M.
Marsman
, and
G.
Kresse
, “
The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set
,”
J. Chem. Phys.
122
,
234102
(
2005
).
46.
P.
Broqvist
,
A.
Alkauskas
, and
A.
Pasquarello
, “
Hybrid-functional calculations with plane-wave basis sets: Effect of singularity correction on total energies, energy eigenvalues, and defect energy levels
,”
Phys. Rev. B
80
,
085114
(
2009
).
47.
R.
Sundararaman
and
T. A.
Arias
, “
Regularization of the Coulomb singularity in exact exchange by Wigner-Seitz truncated interactions: Towards chemical accuracy in nontrivial systems
,”
Phys. Rev. B
87
,
165122
(
2013
).
48.
G. H.
Booth
,
T.
Tsatsoulis
,
G. K.-L.
Chan
, and
A.
Grüneis
, “
From plane waves to local Gaussians for the simulation of correlated periodic systems
,”
J. Chem. Phys.
145
,
084111
(
2016
).
49.
F.
Tran
,
J.
Stelzl
, and
P.
Blaha
, “
Rungs 1 to 4 of DFT Jacob’s ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids
,”
J. Chem. Phys.
144
,
204120
(
2016
).
50.
G.-X.
Zhang
,
A. M.
Reilly
,
A.
Tkatchenko
, and
M.
Scheffler
, “
Performance of various density-functional approximations for cohesive properties of 64 bulk solids
,”
New J. Phys.
20
,
063020
(
2018
).
51.
L.
Schimka
,
J.
Harl
, and
G.
Kresse
, “
Improved hybrid functional for solids: The HSEsol functional
,”
J. Chem. Phys.
134
,
024116
(
2011
).
52.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
53.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
54.
M. F.
Lange
and
T. C.
Berkelbach
, “
Improving MP2 bandgaps with low-scaling approximations to EOM-CCSD
,”
J. Chem. Phys.
155
,
081101
(
2021
).
55.
S.
Banerjee
and
A. Y.
Sokolov
, “
Non-Dyson algebraic diagrammatic construction theory for charged excitations in solids
,”
J. Chem. Theory Comput.
18
,
5337
5348
(
2022
).
You do not currently have access to this content.