We revisit a model of semiflexible Gaussian chains proposed by Winkler et al., solve the dynamics of the discrete description of the model, and derive exact algebraic expressions for some of the most relevant dynamical observables, such as the mean-square displacement of individual monomers, the dynamic structure factor, the end-to-end vector relaxation, and the shear stress relaxation modulus. The mathematical expressions for the dynamic structure factor are verified by comparing them with results from Brownian dynamics simulations, reporting an excellent agreement. Then, we generalize the model to linear polymer chains with arbitrary stiffness. In particular, we focus on the case of a linear polymer with stiffness that changes linearly from one end of the chain to the other, and we study the same dynamical functions previously presented. We discuss different approaches to check whether a polymer has constant or heterogeneous stiffness along its contour. Finally, we provide expressions for the Lagrangian multipliers for Gaussian chains with variable stiffness and bond length, as well as for chains with torsion-like interactions. Overall, this work presents a new insight into a well-known model for semiflexible chains and provides tools that can be exploited to explore a much broader class of polymers or compare the predictions of the model with simulations of coarse-grained semiflexible polymers.

1.
C.
Bustamante
,
J. F.
Marko
,
E. D.
Siggia
, and
S.
Smith
, “
Entropic elasticity of λ-phage DNA
,”
Science
265
,
1599
(
1994
).
2.
J.
Käs
,
H.
Strey
,
J. X.
Tang
,
D.
Finger
,
R.
Ezzell
,
E.
Sackmann
, and
P. A.
Janmey
, “
F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions
,”
Biophys. J.
70
,
609
625
(
1996
).
3.
C. K.
Ober
, “
Shape persistence of synthetic polymers
,”
Science
288
,
448
449
(
2000
).
4.
A.
Garaizar
,
I.
Sanchez-Burgos
,
R.
Collepardo-Guevara
, and
J. R.
Espinosa
, “
Expansion of intrinsically disordered proteins increases the range of stability of liquid–liquid phase separation
,”
Molecules
25
,
4705
(
2020
).
5.
J. F.
Marko
and
E. D.
Siggia
, “
Stretching DNA
,”
Macromolecules
28
,
8759
8770
(
1995
).
6.
R.
Shusterman
,
S.
Alon
,
T.
Gavrinyov
, and
O.
Krichevsky
, “
Monomer dynamics in double- and single-stranded DNA polymers
,”
Phys. Rev. Lett.
92
,
048303
(
2004
).
7.
J. P.
Richard
, “
Protein flexibility and stiffness enable efficient enzymatic catalysis
,”
J. Am. Chem. Soc.
141
,
3320
3331
(
2019
).
8.
G. A.
Vliegenthart
,
A.
Ravichandran
,
M.
Ripoll
,
T.
Auth
, and
G.
Gompper
, “
Filamentous active matter: Band formation, bending, buckling, and defects
,”
Sci. Adv.
6
,
eaaw9975
(
2020
).
9.
M. M. A. E.
Claessens
,
M.
Bathe
,
E.
Frey
, and
A. R.
Bausch
, “
Actin-binding proteins sensitively mediate F-actin bundle stiffness
,”
Nat. Mater.
5
,
748
753
(
2006
).
10.
R. G.
Winkler
and
G.
Gompper
, “
The physics of active polymers and filaments
,”
J. Chem. Phys.
153
,
040901
(
2020
).
11.
O.
Kratky
and
G.
Porod
, “
Röntgenuntersuchung gelöster fadenmoleküle
,”
Recl. Trav. Chim. Pays-Bas
68
,
1106
1122
(
1949
).
12.
M.
Bathe
,
C.
Heussinger
,
M. M. A. E.
Claessens
,
A. R.
Bausch
, and
E.
Frey
, “
Cytoskeletal bundle mechanics
,”
Biophys. J.
94
,
2955
2964
(
2008
).
13.
J.
Wilhelm
and
E.
Frey
, “
Radial distribution function of semiflexible polymers
,”
Phys. Rev. Lett.
77
,
2581
(
1996
).
14.
J. T.
Bullerjahn
,
S.
Sturm
,
L.
Wolff
, and
K.
Kroy
, “
Monomer dynamics of a wormlike chain
,”
Europhys. Lett.
96
,
48005
(
2011
).
15.
E. F.
Koslover
and
A. J.
Spakowitz
, “
Multiscale dynamics of semiflexible polymers from a universal coarse-graining procedure
,”
Phys. Rev. E
90
,
013304
(
2014
).
16.
M.
Hinczewski
,
X.
Schlagberger
,
M.
Rubinstein
,
O.
Krichevsky
, and
R. R.
Netz
, “
End-monomer dynamics in semiflexible polymers
,”
Macromolecules
42
,
860
875
(
2009
).
17.
A.
Marantan
and
L.
Mahadevan
, “
Mechanics and statistics of the worm-like chain
,”
Am. J. Phys.
86
,
86
94
(
2018
).
18.
J. P.
Peters
and
L. J.
Maher
, “
DNA curvature and flexibility in vitro and in vivo
,”
Q. Rev. Biophys.
43
,
23
63
(
2010
).
19.
H.
Kleinert
and
A.
Chervyakov
, “
Perturbation theory for path integrals of stiff polymers
,”
J. Phys. A: Math. Gen.
39
,
8231
(
2006
).
20.
H.-P.
Hsu
,
W.
Paul
, and
K.
Binder
, “
Polymer chain stiffness vs. excluded volume: A Monte Carlo study of the crossover towards the worm-like chain model
,”
Europhys. Lett.
92
,
28003
(
2010
).
21.
R. A.
Harris
and
J. E.
Hearst
, “
On polymer dynamics
,”
J. Chem. Phys.
44
,
2595
2602
(
1966
).
22.
J. E.
Hearst
,
R. A.
Harris
, and
E.
Beals
, “
On polymer dynamics. II
,”
J. Chem. Phys.
45
,
3106
3113
(
1966
).
23.
M.
Bixon
and
R.
Zwanzig
, “
Optimized Rouse–Zimm theory for stiff polymers
,”
J. Chem. Phys.
68
,
1896
(
1978
).
24.
K. F.
Freed
, “
Wiener integrals and models of stiff polymer chains
,”
J. Chem. Phys.
54
,
1453
1463
(
1971
).
25.
G. T.
Barkema
and
J. M. J.
Van Leeuwen
, “
A model for the dynamics of extensible semiflexible polymers
,”
J. Stat. Mech.: Theory Exp.
2012
,
P12019
.
26.
G. T.
Barkema
,
D.
Panja
, and
J. M. J.
Van Leeuwen
, “
Semiflexible polymer dynamics with a bead-spring model
,”
J. Stat. Mech.: Theory Exp.
2014
,
P11008
.
27.
D.
Panja
,
G. T.
Barkema
, and
J. M. J.
van Leeuwen
, “
Efficient simulation of semiflexible polymers
,”
Phys. Rev. E
92
,
032603
(
2015
).
28.
G. T.
Barkema
and
J. M. J.
Van Leeuwen
, “
Efficient simulation of semiflexible polymers with stiff bonds
,”
Phys. Rev. E
95
,
012502
(
2017
).
29.
R. G.
Winkler
,
P.
Reineker
, and
L.
Harnau
, “
Models and equilibrium properties of stiff molecular chains
,”
J. Chem. Phys.
101
,
8119
8129
(
1994
).
30.
L.
Harnau
,
R. G.
Winkler
, and
P.
Reineker
, “
Dynamic properties of molecular chains with variable stiffness
,”
J. Chem. Phys.
102
,
7750
7757
(
1995
).
31.
L.
Harnau
,
R. G.
Winkler
, and
P.
Reineker
, “
Dynamic structure factor of semiflexible macromolecules in dilute solution
,”
J. Chem. Phys.
104
,
6355
6368
(
1996
).
32.
R. G.
Winkler
, “
Deformation of semiflexible chains
,”
J. Chem. Phys.
118
,
2919
2928
(
2003
).
33.
E. P.
Petrov
,
T.
Ohrt
,
R. G.
Winkler
, and
P.
Schwille
, “
Diffusion and segmental dynamics of double-stranded DNA
,”
Phys. Rev. Lett.
97
,
258101
(
2006
).
34.
R. G.
Winkler
, “
Conformational and rheological properties of semiflexible polymers in shear flow
,”
J. Chem. Phys.
133
,
164905
(
2010
).
35.
A.
Martín-Gómez
,
T.
Eisenstecken
,
G.
Gompper
, and
R. G.
Winkler
, “
Active Brownian filaments with hydrodynamic interactions: Conformations and dynamics
,”
Soft Matter
15
,
3957
3969
(
2019
).
36.
C. A.
Philipps
,
G.
Gompper
, and
R. G.
Winkler
, “
Dynamics of active polar ring polymers
,”
Phys. Rev. E
105
,
L062501
(
2022
).
37.
M.
Dolgushev
and
A.
Blumen
, “
Dynamics of semiflexible chains, stars, and dendrimers
,”
Macromolecules
42
,
5378
5387
(
2009
).
38.
M.
Dolgushev
and
A.
Blumen
, “
Dynamics of semiflexible treelike polymeric networks
,”
J. Chem. Phys.
131
,
044905
(
2009
).
39.
F.
Fürstenberg
,
M.
Dolgushev
, and
A.
Blumen
, “
Dynamics of semiflexible regular hyperbranched polymers
,”
J. Chem. Phys.
138
,
034904
(
2013
).
40.
M.
Dolgushev
,
G.
Berezovska
, and
A.
Blumen
, “
Maximum entropy principle applied to semiflexible ring polymers
,”
J. Chem. Phys.
135
,
094901
(
2011
).
41.
M.
Dolgushev
and
A.
Blumen
, “
Dynamics of chains and dendrimers with heterogeneous semiflexibility
,”
J. Chem. Phys.
132
,
124905
(
2010
).
42.
M.
Doi
,
S. F.
Edwards
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1988
), Vol. 73.
43.
A. E.
Likhtman
, “
Viscoelasticity and molecular rheology
,” in
Polymer Science: A Comprehensive Reference
, edited by
K.
Matyjaszewski
and
M.
Möller
(
Elsevier
,
Amsterdam
,
2012
), pp.
133
179
.
44.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
), Vol. 1.
45.
S.
Kouachi
, “
Eigenvalues and eigenvectors of tridiagonal matrices
,”
Electron. J. Linear Algebra
15
,
115
133
(
2006
).
46.
F.
Chatelin
,
Eigenvalues of Matrices
, Revised edition (
SIAM
,
2012
).
47.
F.
Fürstenberg
,
M.
Dolgushev
, and
A.
Blumen
, “
Analytical model for the dynamics of semiflexible dendritic polymers
,”
J. Chem. Phys.
136
,
154904
(
2012
).
48.
A. R.
Tejedor
and
J.
Ramírez
, “
Dynamics of entangled polymers subjected to reptation and drift
,”
Soft Matter
16
,
3154
3168
(
2020
).
49.
M.
Tournus
,
A.
Kirshtein
,
L. V.
Berlyand
, and
I. S.
Aranson
, “
Flexibility of bacterial flagella in external shear results in complex swimming trajectories
,”
J. R. Soc., Interface
12
,
20140904
(
2015
).
50.
L. J.
Fauci
and
C. S.
Peskin
, “
A computational model of aquatic animal locomotion
,”
J. Comput. Phys.
77
,
85
108
(
1988
).
51.
S. D.
Olson
,
S. S.
Suarez
, and
L. J.
Fauci
, “
Coupling biochemistry and hydrodynamics captures hyperactivated sperm motility in a simple flagellar model
,”
J. Theor. Biol.
283
,
203
216
(
2011
).
52.
T. D.
Montenegro-Johnson
,
A. A.
Smith
,
D. J.
Smith
,
D.
Loghin
, and
J. R.
Blake
, “
Modelling the fluid mechanics of cilia and flagella in reproduction and development
,”
Eur. Phys. J. E
35
,
111
(
2012
).
53.
J.
Simons
,
L.
Fauci
, and
R.
Cortez
, “
A fully three-dimensional model of the interaction of driven elastic filaments in a Stokes flow with applications to sperm motility
,”
J. Biomech.
48
,
1639
1651
(
2015
).
54.
S. F.
Schoeller
and
E. E.
Keaveny
, “
From flagellar undulations to collective motion: Predicting the dynamics of sperm suspensions
,”
J. R. Soc., Interface
15
,
20170834
(
2018
).
55.
M.
Dolgushev
and
A.
Blumen
, “
Dynamics of discrete semiflexible chains under dihedral constraints: Analytic results
,”
J. Chem. Phys.
138
,
204902
(
2013
).

Supplementary Material

You do not currently have access to this content.