We show that the energy of a perturbed system can be fully recovered from the unperturbed system’s electron density. We derive an alchemical integral transform by parametrizing space in terms of transmutations, the chain rule, and integration by parts. Within the radius of convergence, the zeroth order yields the energy expansion at all orders, restricting the textbook statement by Wigner that the p-th order wave function derivative is necessary to describe the (2p + 1)-th energy derivative. Without the need for derivatives of the electron density, this allows us to cover entire chemical neighborhoods from just one quantum calculation instead of single systems one by one. Numerical evidence presented indicates that predictive accuracy is achieved in the range of mHa for the harmonic oscillator or the Morse potential and in the range of machine accuracy for hydrogen-like atoms. Considering isoelectronic nuclear charge variations by one proton in all multi-electron atoms from He to Ne, alchemical integral transform based estimates of the relative energy deviate by only few mHa from corresponding Hartree–Fock reference numbers.

1.
N.
Marzari
,
S.
de Gironcoli
, and
S.
Baroni
, “
Structure and phase stability of Gax In1−xP solid solutions from computational alchemy
,”
Phys. Rev. Let.
72
(
25
),
4001
4004
(
1994
).
2.
O. A.
von Lilienfeld
,
R. D.
Lins
, and
U.
Rothlisberger.
, “
Variational particle number approach for rational compound design
,”
Phys. Rev. Lett.
95
,
153002
(
2005
).
3.
E. B.
Wilson
, “
Four-dimensional electron density function
,”
J. Chem. Phys.
36
(
8
),
2232
2233
(
1962
).
4.
G. F.
von Rudorff
and
O.
Anatole von Lilienfeld
, “
Alchemical perturbation density functional theory
,”
Phys. Rev. Res.
2
(
2
),
023220
(
2020
).
5.
F.
Weigend
,
C.
Schrodt
, and
R.
Ahlrichs
, “
Atom distributions in binary atom clusters: A perturbational approach and its validation in a case study
,”
J. Chem. Phys.
121
(
21
),
10380
10384
(
2004
).
6.
D.
Sheppard
,
G.
Henkelman
, and
O. A.
von Lilienfeld
, “
Alchemical derivatives of reaction energetics
,”
J. Chem. Phys.
133
(
8
),
084104
084104–7
(
2010
).
7.
G. F.
von Rudorff
, Arbitrarily Precise Quantum Alchemy,
2021
.
8.
E. A.
Eikey
,
A. M.
Maldonado
,
C. D.
Griego
,
G. F.
von Rudorff
, and
J. A.
Keith
, “
Evaluating quantum alchemy of atoms with thermodynamic cycles: Beyond ground electronic states
,”
J. Chem. Phys.
156
(
6
),
064106
(
2022
).
9.
M.
Lesiuk
,
R.
Balawender
, and
J.
Zachara
, “
Higher order alchemical derivatives from coupled perturbed self-consistent field theory
,”
J. Chem. Phys.
136
(
3
),
034104
(
2012
).
10.
K.
Wolinski
,
J. F.
Hinton
, and
P.
Pulay
, “
Efficient implementation of the gauge-independent atomic orbital method for nmr chemical shift calculations
,”
J. Am. Chem. Soc.
112
(
23
),
8251
8260
(
1990
).
11.
B. I.
Dunlap
and
J.
Andzelm
, “
2nd derivatives of the local-density-functional total energy when the local potential is fitted
,”
Phys. Rev. A
45
(
1
),
81
87
(
1992
).
12.
G.
Domenichini
and
O.
Anatole von Lilienfeld
, “
Alchemical geometry relaxation
,”
J. Chem. Phys.
156
,
184801
(
2022
).
13.
C. C.
Margossian
, “
A review of automatic differentiation and its efficient implementation
,”
Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
9
(
4
),
e1305
(
2019
).
14.
M.
Abadi
,
A.
Agarwal
,
Paul
B.
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
,” Software available from tensorflow.org,
2015
.
15.
A.
Paszke
,
S.
Gross
,
S.
Chintala
,
G.
Chanan
,
E.
Yang
,
Z.
DeVito
,
Z.
Lin
,
A.
Desmaison
,
L.
Antiga
, and
A.
Lerer
, Automatic Differentiation in Pytorch,
2017
.
16.
J. S.
Dramsch
and
Contributors
, Complex-valued Neural Networks in Keras with Tensorflow,
2019
.
17.
Theano Development Team
, “
Theano: A Python framework for fast computation of mathematical expressions
,” arXiv:1605.02688 (
2016
).
18.
T.
Tamayo-Mendoza
,
C.
Kreisbeck
,
R.
Lindh
, and
A.
Aspuru-Guzik
, “
Automatic differentiation in quantum chemistry with applications to fully variational Hartree–Fock
,”
ACS Cent. Sci.
4
(
5
),
559
566
(
2018
).
19.
V.
Bergholm
,
J.
Izaac
,
M.
Schuld
,
C.
Gogolin
,
M.
Sohaib Alam
,
S.
Ahmed
,
J. M.
Arrazola
,
C.
Blank
,
A.
Delgado
,
S.
Jahangiri
,
K.
McKiernan
,
J.
Jakob Meyer
,
Z.
Niu
,
A.
Száva
, and
N.
Killoran
, “
PennyLane: Automatic differentiation of hybrid quantum-classical computations
,” arXiv:1811.04968 (
2018
).
20.
J. M.
Arrazola
,
S.
Jahangiri
,
A.
Delgado
,
J.
Ceroni
,
J.
Izaac
,
A.
Száva
,
U.
Azad
,
R. A.
Lang
,
Z.
Niu
,
O.
Di Matteo
,
R.
Moyard
,
J.
Soni
,
M.
Schuld
,
R. A.
Vargas-Hernández
,
T.
Tamayo-Mendoza
,
C. Y.-Yu.
Lin
,
A.
Aspuru-Guzik
, and
N.
Killoran
, “
Differentiable quantum computational chemistry with PennyLane
,” arXiv:2111.09967 (
2021
).
21.
M. F.
Kasim
,
S.
Lehtola
, and
S. M.
Vinko
, “
DQC: A Python program package for differentiable quantum chemistry
,”
J. Chem. Phys.
156
(
8
),
084801
(
2022
).
22.
G.
Ceder
, “
Predicting properties from scratch
,”
Science
280
(
5366
),
1099
1100
(
1998
).
23.
K.
Saravanan
,
J. R.
Kitchin
,
O. A.
von Lilienfeld
, and
J. A.
Keith
, “
Alchemical predictions for computational catalysis: Potential and limitations
,”
J. Phys. Chem. Lett.
8
(
20
),
5002
5007
(
2017
).
24.
X.
Gonze
and
J.-P.
Vigneron
, “
Density-functional approach to nonlinear-response coefficients of solids
,”
Phys. Rev. B
39
,
13120
13128
(
1989
).
25.
R. L.
Mishkov
, “
Generalization of the formula of Faa di Bruno for a composite function with a vector argument
,”
Int. J. Math. Math. Sci.
24
(
7
),
481
491
(
2000
).
26.
O. A.
von Lilienfeld
, “
Accurate ab initio energy gradients in chemical compound space
,”
J. Chem. Phys.
131
(
16
),
164102
(
2009
).
27.
P. E.
Smith
and
W. F.
van Gunsteren
, “
Predictions of free energy differences from a single simulation of the initial state
,”
J. Chem. Phys.
100
,
577
(
1994
).
28.
O. A.
von Lilienfeld
and
M. E.
Tuckerman
, “
Molecular grand-canonical ensemble density functional theory and exploration of chemical space
,”
J. Chem. Phys.
125
(
15
),
154104
(
2006
).
29.
P.
Pulay
, “
Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. I. Theory
,”
Mol. Phys.
100
(
1
),
57
62
(
2002
).
30.
G.
Domenichini
,
G. F.
von Rudorff
, and
O. A.
von Lilienfeld
, “
Effects of perturbation order and basis set on alchemical predictions
,”
J. Chem. Phys.
153
(
14
),
144118
(
2020
).
31.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
New basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
(
11
),
4814
4820
(
2019
).
32.
R.
Balawender
,
M.
Lesiuk
,
F.
De Proft
,
C.
Van Alsenoy
, and
P.
Geerlings
, “
Exploring chemical space with alchemical derivatives: Alchemical transformations of H through Ar and their ions as a proof of concept
,”
Phys. Chem. Chem. Phys.
21
(
43
),
23865
23879
(
2019
).
33.
M. A.
Ambroise
and
F.
Jensen
, “
Probing basis set requirements for calculating core ionization and core excitation spectroscopy by the delta self-consistent-field approach
,”
J. Chem. Theory Comput.
15
(
1
),
325
337
(
2019
).
34.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
, Quantenmechanik, Band 2,
Walter de Gruyter GmbH & Co KG
,
2008
.
35.
Wolfram Research, Inc., Wolfram, Alpha Knowledgebase, Champaign,
2021
.
36.
J. P.
Dahl
and
M.
Springborg
, “
The morse oscillator in position space, momentum space, and phase space
,”
J. Chem. Phys.
88
(
7
),
4535
4547
(
1988
).
37.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G.
Kin-Lic Chan
, “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
(
1
),
e1340
(
2018
).
38.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
(
2
),
024109
(
2020
).
39.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
(
7825
),
357
362
(
2020
).
40.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
, and
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
41.
S. K.
Lam
,
A.
Pitrou
, and
S.
Seibert
, “
Numba: A LLVM-based Python JIT compiler
,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM’15
(
Association for Computing Machinery
,
New York
,
2015
).
42.
J. D.
Hunter
, “
Matplotlib: A 2D graphics environment
,”
Comput. Sci. Eng.
9
(
3
),
90
95
(
2007
).

Supplementary Material

You do not currently have access to this content.