We report the implementation of effective quantum electrodynamics (QED) potentials for all-electron four-component relativistic molecular calculations using the DIRAC code. The potentials are also available for two-component calculations, being properly picture-change transformed. The latter point is important; we demonstrate through atomic calculations that picture-change errors are sizable. Specifically, we have implemented the Uehling potential [E. A. Uehling, Phys. Rev. 48, 55 (1935)] for vacuum polarization and two effective potentials [P. Pyykkö and L.-B. Zhao, J. Phys. B: At., Mol. Opt. Phys. 36, 1469 (2003) and V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005)] for electron self-energy. We provide extensive theoretical background for these potentials, hopefully reaching an audience beyond QED specialists. We report the following sample applications: (i) We first confirm the conjecture of P. Pyykkö that QED effects are observable for the AuCN molecule by directly calculating ground-state rotational constants B0 of the three isotopomers studied by microwave spectroscopy; QED brings the corresponding substitution Au–C bond length rs from 0.23 to 0.04 pm agreement with experiment. (ii) In regard to spectroscopic constants of van der Waals dimers M2 (M = Hg, Rn, Cn, Og), QED induces bond length expansions on the order of 0.15(0.30) pm for row 6(7) dimers. (iii) We confirm that there is a significant change of valence s population of Pb in the reaction PbH4 → PbH2 + H2, which is thereby a good candidate for observing QED effects in chemical reactions, as proposed in [K. G. Dyall et al., Chem. Phys. Lett. 348, 497 (2001)]. We also find that whereas in PbH4 the valence 6s1/2 population resides in bonding orbitals, it is mainly found in nonbonding orbitals in PbH2. QED contributes 0.32 kcal/mol to the reaction energy, thereby reducing its magnitude by −1.27%. For corresponding hydrides of superheavy flerovium, the electronic structures are quite similar. Interestingly, the QED contribution to the reaction energy is of quite similar magnitude (0.35 kcal/mol), whereas the relative change is significantly smaller (−0.50%). This curious observation can be explained by the faster increase in negative vacuum polarization over positive electron self-energy contributions as a function of nuclear charge.

1.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
2.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science
(
John Wiley & Sons
,
2014
).
3.
T.
Saue
,
ChemPhysChem
12
,
3077
(
2011
).
4.
P.
Pyykkö
,
Annu. Rev. Phys. Chem.
63
,
45
(
2012
).
5.
P.
Schwerdtfeger
,
L. F.
Pašteka
,
A.
Punnett
, and
P. O.
Bowman
,
Nucl. Phys. A
944
,
551
(
2015
).
6.
P.
Pyykko
and
J. P.
Desclaux
,
Acc. Chem. Res.
12
,
276
(
1979
).
7.
P.
Pyykko
,
Chem. Rev.
88
,
563
(
1988
).
8.
R.
Ahuja
,
A.
Blomqvist
,
P.
Larsson
,
P.
Pyykkö
, and
P.
Zaleski-Ejgierd
,
Phys. Rev. Lett.
106
,
018301
(
2011
).
9.
E.
Eliav
,
U.
Kaldor
, and
Y.
Ishikawa
,
Chem. Phys. Lett.
222
,
82
(
1994
).
10.
N. N.
Dutta
and
S.
Majumder
,
Phys. Rev. A
85
,
032512
(
2012
).
11.
A.
Shee
,
T.
Saue
,
L.
Visscher
, and
A. S. P.
Gomes
,
J. Chem. Phys.
149
,
174113
(
2018
).
12.
T.
Saue
and
L.
Visscher
,
Theoretical Chemistry and Physics of Heavy and Superheavy Elements
(
Springer
,
2003
), pp.
211
267
.
13.
W.
Liu
and
I.
Lindgren
,
J. Chem. Phys.
139
,
014108
(
2013
).
14.
W. E.
Lamb
and
R. C.
Retherford
,
Phys. Rev.
72
,
241
(
1947
).
15.
Th.
Stöhlker
,
P. H.
Mokler
,
F.
Bosch
,
R. W.
Dunford
,
F.
Franzke
,
O.
Klepper
,
C.
Kozhuharov
,
T.
Ludziejewski
,
F.
Nolden
,
H.
Reich
 et al,
Phys. Rev. Lett.
85
,
3109
(
2000
).
16.
P.
Pyykkö
,
Chem. Rev.
112
,
371
(
2012
).
17.
P.
Pyykkö
,
M.
Tokman
, and
L. N.
Labzowsky
,
Phys. Rev. A
57
,
R689
(
1998
).
18.
H.
Persson
,
I.
Lindgren
, and
S.
Salomonson
,
Phys. Scr.
T46
,
125
(
1993
).
19.
H.
Persson
,
I.
Lindgren
,
S.
Salomonson
, and
P.
Sunnergren
,
Phys. Rev. A
48
,
2772
(
1993
).
20.
M.
Puchalski
and
K.
Pachucki
,
Phys. Rev. Lett.
111
,
243001
(
2013
).
21.
M.
Haidar
,
Z.-X.
Zhong
,
V.
Korobov
, and
J.-P.
Karr
,
Phys. Rev. A
101
,
022501
(
2020
).
22.
T.
Aoyama
,
M.
Hayakawa
,
T.
Kinoshita
, and
M.
Nio
,
Phys. Rev. Lett.
109
,
111807
(
2012
).
23.
E. A.
Uehling
,
Phys. Rev.
48
,
55
(
1935
).
24.
P.
Pyykkö
and
L.-B.
Zhao
,
J. Phys. B: At., Mol. Opt. Phys.
36
,
1469
(
2003
).
25.
V. V.
Flambaum
and
J. S. M.
Ginges
,
Phys. Rev. A
72
,
052115
(
2005
).
26.
V. M.
Shabaev
,
I. I.
Tupitsyn
, and
V. A.
Yerokhin
,
Phys. Rev. A
88
,
012513
(
2013
).
27.
A. V.
Malyshev
,
D. A.
Glazov
,
V. M.
Shabaev
,
I. I.
Tupitsyn
,
V. A.
Yerokhin
, and
V. A.
Zaytsev
,
Phys. Rev. A
106
,
012806
(
2022
).
28.
K. G.
Dyall
,
I. P.
Grant
,
C. T.
Johnson
,
F. A.
Parpia
, and
E. P.
Plummer
,
Comput. Phys. Commun.
55
,
425
(
1989
).
29.
V. M.
Shabaev
,
I. I.
Tupitsyn
, and
V. A.
Yerokhin
,
Comput. Phys. Commun.
189
,
175
(
2015
).
30.
V. M.
Shabaev
,
I. I.
Tupitsyn
, and
V. A.
Yerokhin
,
Comput. Phys. Commun.
223
,
69
(
2018
).
31.
E. V.
Kahl
and
J. C.
Berengut
,
Comput. Phys. Commun.
238
,
232
(
2019
).
32.
L. F.
Pašteka
,
E.
Eliav
,
A.
Borschevsky
,
U.
Kaldor
, and
P.
Schwerdtfeger
,
Phys. Rev. Lett.
118
,
023002
(
2017
).
33.
B. C.
Shepler
,
N. B.
Balabanov
, and
K. A.
Peterson
,
J. Phys. Chem. A
109
,
10363
(
2005
).
34.
B. C.
Shepler
,
N. B.
Balabanov
, and
K. A.
Peterson
,
J. Chem. Phys.
127
,
164304
(
2007
).
35.
K. A.
Peterson
,
J. Chem. Phys.
142
,
074105
(
2015
).
36.
R. M.
Cox
,
M.
Citir
,
P. B.
Armentrout
,
S. R.
Battey
, and
K. A.
Peterson
,
J. Chem. Phys.
144
,
184309
(
2016
).
37.
R.
Feng
and
K. A.
Peterson
,
J. Chem. Phys.
147
,
084108
(
2017
).
38.
T.
Hangele
,
M.
Dolg
,
M.
Hanrath
,
X.
Cao
, and
P.
Schwerdtfeger
,
J. Chem. Phys.
136
,
214105
(
2012
).
39.
T.
Hangele
,
M.
Dolg
, and
P.
Schwerdtfeger
,
J. Chem. Phys.
138
,
174113
(
2013
).
40.
T.
Hangele
and
M.
Dolg
,
Chem. Phys. Lett.
616–617
,
222
(
2014
).
41.
T.
Hangele
and
M.
Dolg
,
J. Chem. Phys.
138
,
044104
(
2013
).
42.
P.
Schwerdtfeger
,
ChemPhysChem
12
,
3143
(
2011
).
43.
M.
Dolg
and
X.
Cao
,
Chem. Rev.
112
,
403
(
2012
).
44.
A. N.
Artemyev
, “
Effective QED Hamiltonians
,” in
Handbook of Relativistic Quantum Chemistry
, edited by
W.
Liu
(
Springer
,
Berlin, Heidelberg
,
2016
), pp.
1
19
.
45.
E. J.
Baerends
,
W. H. E.
Schwarz
,
P.
Schwerdtfeger
, and
J. G.
Snijders
,
J. Phys. B: At., Mol. Opt. Phys.
23
,
3225
3240
(
1990
).
46.
V.
Kellö
and
A. J.
Sadlej
,
Int. J. Quantum Chem.
68
,
159
(
1998
).
47.
K. G.
Dyall
,
Int. J. Quantum Chem.
78
,
412
421
(
2000
).
48.
T.
Saue
,
R.
Bast
,
A. S. P.
Gomes
,
H. J.
Aa Jensen
,
L.
Visscher
,
I. A.
Aucar
,
R.
Di Remigio
,
K. G.
Dyall
,
E.
Eliav
,
E.
Fasshauer
 et al,
J. Chem. Phys.
152
,
204104
(
2020
).
49.
T.
Saue
and
T.
Helgaker
,
J. Comput. Chem.
23
,
814
(
2002
).
50.
P.
Pyykkö
, Davidson Lecture, delivered for University of North Texas for 25 October 2013. Available at http://www.chem.helsinki.fi/∼pyykko/Videos/UNT.mp4. AuCN is discussed at 47:44 of the video.
51.
A. L.
Cyriaque Genet
,
F.
Intravaia
, and
S.
Reynaud
,
Ann. Fond. Louis Broglie
29
,
331
(
2004
), also available from the publisher’s website: https://fondationlouisdebroglie.org/AFLB-Web/fldb-annales-index.htm.
52.
Forces of the Quantum Vacuum: An Introduction to Casimir Physics
, edited by
W.
Simpson
and
U.
Leonhardt
(
World Scientific
,
NJ
,
2015
).
53.
K. G.
Dyall
,
C. W.
Bauschlicher
,
D. W.
Schwenke
, and
P.
Pyykkö
,
Chem. Phys. Lett.
348
,
497
(
2001
).
54.
L. V.
Skripnikov
,
J. Chem. Phys.
154
,
201101
(
2021
).
55.
L. V.
Skripnikov
,
D. V.
Chubukov
, and
V. M.
Shakhova
,
J. Chem. Phys.
155
,
144103
(
2021
).
56.
A.
Zaitsevskii
,
L. V.
Skripnikov
,
N. S.
Mosyagin
,
T.
Isaev
,
R.
Berger
,
A. A.
Breier
, and
T. F.
Giesen
,
J. Chem. Phys.
156
,
044306
(
2022
).
57.
J. A.
Gaunt
,
Proc. R. Soc. London, Ser. A
122
,
513
(
1929
).
58.
M.
Gell-Mann
,
Il Nuovo Cimento
4
,
848
(
1956
).
59.
S. S.
Schweber
,
An Introduction to Relativistic Quantum Field Theory
(
Row, Peterson and Company
,
Evanston, IL
,
1961
).
60.
M.
Peskin
and
D.
Schroeder
,
An Introduction to Quantum Field Theory
, Frontiers in Physics (
Westview Press
,
1995
).
61.
W.
Greiner
and
J.
Reinhardt
,
Field Quantization
(
Springer-Verlag
,
Berlin, Heidelberg
,
1996
).
62.
G. C.
Wick
,
Phys. Rev.
80
,
268
(
1950
).
63.
D.
Kaiser
,
Am. Sci.
93
,
156
(
2005
).
64.
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
136
,
453
(
1932
).
65.
W. H.
Furry
,
Phys. Rev.
81
,
115
(
1951
).
66.
L. W.
Fullerton
and
G. A.
Rinker
,
Phys. Rev. A
13
,
1283
(
1976
).
67.
S.
Klarsfeld
,
Phys. Lett. B
66
,
86
(
1977
).
68.
A. M.
Frolov
and
D. M.
Wardlaw
,
Eur. Phys. J. B
85
,
348
(
2012
).
69.
T.
Beier
,
P. J.
Mohr
,
H.
Persson
, and
G.
Soff
,
Phys. Rev. A
58
,
954
(
1998
).
70.
E. H.
Wichmann
and
N. M.
Kroll
,
Phys. Rev.
101
,
843
(
1956
).
71.
G.
Källén
and
A.
Sabry
,
Selsk., Mat.-Fys. Medd.
29
,
1
(
1955
).
72.
M.
Baranger
,
H. A.
Bethe
, and
R. P.
Feynman
,
Phys. Rev.
92
,
482
(
1953
).
73.
I.
Lindgren
,
Relativistic Many-Body Theory: A New Field-Theoretical Approach
, 2nd ed. (
Springer
,
2016
), Vol. 63.
74.
J.
Malenfant
,
Phys. Rev. D
35
,
1525
(
1987
).
75.
P.
Indelicato
and
P. J.
Mohr
,
Phys. Rev. A
58
,
165
(
1998
).
76.

The −δ in Table 1 of Ref. 24 corresponds to 100×SELi/ΔELiHfs with values taken from Table 2 of Ref. 77, where SELi in turn comes from S. A. Blundell, K. T.Cheng, and J.Sapirstein, Phys. Rev. A55, 1857 (1997).

77.
S.
Boucard
and
P.
Indelicato
,
Eur. Phys. J. D
8
,
59
(
2000
).
78.
F.
Mandl
and
G.
Shaw
,
Quantum Field Theory
(
John Wiley & Sons
,
2010
).
79.
V. B.
Berestetskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
,
Quantum Electrodynamics
, Course of Theoretical Physics Vol. 4 (
Pergamon Press
,
Oxford
,
1982
).
80.
R.
Hofstadter
,
Rev. Mod. Phys.
28
,
214
(
1956
).
81.
C. B.
Lang
and
N.
Pucker
,
Mathematische Methoden in der Physik
(
Spektrum Akademischer Verlag
,
2016
).
82.
R. J.
Eden
,
Proc. R. Soc. London, Ser. A
210
,
388
(
1952
).
83.
R.
Barbieri
,
J. A.
Mignaco
, and
E.
Remiddi
,
Il Nuovo Cimento A
11
,
865
(
1972
).
84.
J.
Ginges
and
J.
Berengut
,
Phys. Rev. A
93
,
052509
(
2016
).
85.
W.
Greiner
and
J.
Reinhardt
,
Quantum Electrodynamics
, 4th ed. (
Springer-Verlag
,
Berlin, Heidelberg
,
2009
).
86.
C.
Itzykson
and
J.-B.
Zuber
,
Quantum Field Theory (Dover Books on Physics)
(
Dover Publications
,
1980
).
87.
P. J.
Mohr
,
Phys. Rev. A
46
,
4421
(
1992
).
88.
P. J.
Mohr
and
Y.-K.
Kim
,
Phys. Rev. A
45
,
2727
(
1992
).
89.
C.
Thierfelder
and
P.
Schwerdtfeger
,
Phys. Rev. A
82
,
062503
(
2010
).
90.
O.
Fossgaard
,
O.
Gropen
,
E.
Eliav
, and
T.
Saue
,
J. Comput. Phys.
119
,
9355
(
2003
).
91.
S.
Dubillard
,
J.-B.
Rota
,
T.
Saue
, and
K.
Faegri
,
J. Chem. Phys.
124
,
154307
(
2006
).
92.
K. G.
Dyall
,
J. Chem. Phys.
139
,
021103
(
2013
).
93.
B. J.
McKenzie
,
I. P.
Grant
, and
P. H.
Norrington
,
Comput. Phys. Commun.
21
,
233
(
1980
).
94.
C.
Thierfelder
, private communication (2022).
95.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
96.
V. I.
Lebedev
and
D. N.
Laikov
,
Dokl. Math.
59
,
477
481
(
1999
). Angular quadrature parameters available from http://server.ccl.net/cca/software/SOURCES/FORTRAN/Lebedev-Laikov-Grids/index.shtml.
97.
R.
Lindh
,
P.-Å.
Malmqvist
, and
L.
Gagliardi
,
Theor. Chem. Acc.
106
,
178
(
2001
).
98.
DIRAC, a relativistic ab initio electronic structure program, release DIRAC22 (
2022
), written by
H. J. Aa.
Jensen
,
R.
Bast
,
A. S. P.
Gomes
,
T.
Saue
, and
L.
Visscher
, with contributions from
I. A.
Aucar
,
V.
Bakken
,
C.
Chibueze
,
J.
Creutzberg
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
L.
Halbert
,
E. D.
Hedegård
,
T.
Helgaker
,
B.
Helmich–Paris
,
J.
Henriksson
,
M.
van Horn
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
N. H.
List
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Papadopoulos
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
J. V.
Pototschnig
,
R.
di Remigio
,
M.
Repisky
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
B.
Senjean
,
A.
Shee
,
J.
Sikkema
,
A.
Sunaga
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
M. L.
Vidal
,
S.
Villaume
,
O.
Visser
,
T.
Winther
,
S.
Yamamoto
, and
X.
Yuan
, available at , see also http://www.diracprogram.org.
99.
A.
Sunaga
,
M.
Salman
, and
T.
Saue
(
2022
). “
4-component relativistic Hamiltonian with effective QED Potentials for molecular calculations: Dataset
,” Zenodo.
100.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
101.
J.
Sikkema
,
L.
Visscher
,
T.
Saue
, and
M.
Iliaš
,
J. Chem. Phys.
131
,
124116
(
2009
).
102.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
103.
G.
Knizia
,
J. Chem. Theory Comput.
9
,
4834
(
2013
).
104.
K. G.
Dyall
,
J. Phys. Chem. A
113
,
12638
(
2009
).
105.
K. G.
Dyall
,
Theor. Chem. Acc.
117
,
483
(
2007
).
106.
K. G.
Dyall
,
Theor. Chem. Acc.
112
,
403
409
(
2004
).
107.
K. G.
Dyall
and
A. S. P.
Gomes
,
Theor. Chem. Acc.
125
,
97
100
(
2010
).
108.
K. G.
Dyall
,
Theor. Chem. Acc.
129
,
603
613
(
2011
).
109.
K. G.
Dyall
,
Theor. Chem. Acc.
135
,
128
(
2016
).
110.
K. G.
Dyall
, private communication (2021).
111.
K. G.
Dyall
,
Theor. Chem. Acc.
108
,
335
340
(
2002
).
112.
K. G.
Dyall
,
Theor. Chem. Acc.
115
,
441
447
(
2006
).
113.
K. G.
Dyall
,
Theor. Chem. Acc.
131
,
1217
(
2012
).
114.
L.
Visscher
,
T. J.
Lee
, and
K. G.
Dyall
,
J. Chem. Phys.
105
,
8769
8776
(
1996
).
115.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
116.
J. G.
Hill
,
A. O.
Mitrushchenkov
, and
K. A.
Peterson
,
J. Chem. Phys.
138
,
134314
(
2013
).
117.
J.
Senekowitsch
, “
Spektroskopische eigenschaften aus elektronischen wellen-funktionen
,” Ph.D. thesis,
Universität Frankfurt
,
Germany
,
1988
, The SURFIT program is available upon request from K. Peterson (Washington State).
118.
K. G.
Dyall
,
J. Chem. Phys.
100
,
2118
(
1994
).
119.
L.
Visscher
and
T.
Saue
,
J. Chem. Phys.
113
,
3996
(
2000
).
120.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
121.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
122.
J.-M.
Lévy-Leblond
,
Commun. Math. Phys.
6
,
286
(
1967
).
123.
W. R.
Johnson
and
G.
Soff
,
At. Data Nucl. Data Tables
33
,
405
(
1985
).
124.
J.
Thyssen
, “
Development and applications of methods for correlated relativistic calculations of molecular properties
,” Ph.D. thesis,
University of Southern Denmark
,
2001
.
125.

In these calculations, the DIRAC keyword OPENFACTOR was set to one, such that orbital eigenvalues satisfy Koopmans’ theorem.

126.
V. A.
Yerokhin
and
V. M.
Shabaev
,
J. Phys. Chem. Ref. Data
44
,
033103
(
2015
).
127.
L.
Labzowsky
,
I.
Goidenko
,
M.
Tokman
, and
P.
Pyykkö
,
Phys. Rev. A
59
,
2707
(
1999
).
128.
P.
Zaleski-Ejgierd
,
M.
Patzschke
, and
P.
Pyykkö
,
J. Chem. Phys.
128
,
224303
(
2008
).
129.
D. B.
Grotjahn
,
M. A.
Brewster
, and
L. M.
Ziurys
,
J. Am. Chem. Soc.
124
,
5895
(
2002
).
130.
T.
Okabayashi
,
E. Y.
Okabayashi
,
F.
Koto
,
T.
Ishida
, and
M.
Tanimoto
,
J. Am. Chem. Soc.
131
,
11712
(
2009
).
131.
D.
Figgen
,
G.
Rauhut
,
M.
Dolg
, and
H.
Stoll
,
Chem. Phys.
311
,
227
(
2005
).
132.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
133.
W.
Gordy
and
R. L.
Cook
,
Microwave Molecular Spectra
(
John Wiley & Sons
,
NY
,
1970
).
134.
J.
Demaison
,
J. E.
Boggs
, and
A. G.
Császár
,
Equilibrium Molecular Structures: From Spectroscopy to Quantum Chemistry
(
CRC Press
,
2016
).
135.
T.
Okabayashi
, private communication (2020).
136.
K.
Peterson
, private communication (2021).
137.
X.
Wang
,
L.
Andrews
, and
V.
Charlottes
,
J. Am. Chem. Soc.
2561
,
6581
(
2003
).
138.
P.
Schwerdtfeger
and
M.
Seth
,
J. Nucl. Radiochem. Sci.
3
,
133
(
2002
).
139.
A.
Sunaga
and
T.
Saue
,
Mol. Phys.
119
,
e1974592
(
2021
).
140.
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
126
,
360
(
1930
).
141.
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
133
,
60
(
1931
).
142.
W. H.
Furry
and
J. R.
Oppenheimer
,
Phys. Rev.
45
,
245
(
1934
).
143.
C. D.
Anderson
,
Phys. Rev.
43
,
491
(
1933
).
144.
S.
Schweber
,
QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga
, Princeton Series in Physics (
Princeton University Press
,
1994
).
145.
W.
Pauli
and
V.
Weisskopf
, “
On the quantization of the scalar relativistic wave equation
,” in
Pauli and the Spin-Statistics Theorem
, edited by
I.
Duck
and
E.
Sudarshan
(
World Scientific
,
1998
), pp.
238
255
, excerpt from: Helv. Phys. Acta 7, 709 (1934).
146.
A.
Miller
,
Early Quantum Electrodynamics: A Source Book
(
Cambridge University Press
,
1994
).
147.
E.
Majorana
, “
A symmetric theory of electrons and positrons (1937)
,” in
Ettore Majorana, Scientific Papers: On Occasion of the Centenary of His Birth
, edited by
G.-F.
Bassani
and
Council of the Italian Physical Society
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
218
231
.
148.
S.
Weinberg
,
The Quantum Theory of Fields
(
Cambridge University Press
,
1995
), Vol. 1.
149.
S.
Weinberg
,
Daedalus
106
,
17
(
1977
), available at https://www.jstor.org/stable/20024506.
150.
J.
Mehra
, “
Relativistic electrons and quantum fields
,” in
The Golden Age of Theoretical Physics
(
World Scientific
,
2001
), Vol. 2, pp.
1030
1091
.
151.
H.
Kragh
,
Dirac: A Scientific Biography
(
Cambridge University Press
,
1990
).
152.
V. F.
Weisskopf
,
Phys. Today
34
(
11
),
69
(
1981
).
153.
T.
Ohlsson
,
Relativistic Quantum Physics: From Advanced Quantum Mechanics to Introductory Quantum Field Theory
(
Cambridge University Press
,
2011
).
154.
M.
Gell-Mann
and
F.
Low
,
Phys. Rev.
84
,
350
(
1951
).
155.
A.
Fetter
and
J.
Walecka
,
Quantum Theory of Many-Particle Systems (Dover Books on Physics)
(
Dover Publications
,
2012
).
156.
J.
Sucher
,
Phys. Rev.
107
,
1448
(
1957
).
157.
F. J.
Dyson
,
Phys. Rev.
75
,
1736
(
1949
).
158.
L. N.
Labzowsky
,
G. L.
Klimchitskaya
, and
Y.
Dmitriev
,
Relativistic Effects in the Spectra of Atomic Systems
(
Institute of Physics Publishing
,
Bristol; Philadelphia
,
1993
).
159.
F. J.
Dyson
,
Phys. Rev.
75
,
486
(
1949
).
160.
J.
Schwinger
,
Phys. Rev.
74
,
1439
(
1948
).
161.
J. D.
Bjorken
and
S. D.
Drell
,
Relativistic Quantum Fields
(
McGraw-Hill
,
1965
).
162.
P. J.
Mohr
,
G.
Plunien
, and
G.
Soff
,
Phys. Rep.
293
,
227
(
1998
).
163.
M. D.
Schwartz
,
Quantum Field Theory and the Standard Model
(
Cambridge University Press
,
Cambridge
,
2014
).
164.
R. P.
Feynman
,
Phys. Rev.
76
,
749
(
1949
).
165.
P. J.
Mohr
,
AIP Conf. Proc.
189
,
47
(
1989
).
166.
P. J.
Mohr
,
Phys. Rev. A
32
,
1949
(
1985
).
167.
I.
Lindgren
, “
Many-body problems in atomic physics
,” in
Recent Progress in Many-Body Theories: Volume 3
, edited by
T. L.
Ainsworth
,
C. E.
Campbell
,
B. E.
Clements
, and
E.
Krotscheck
(
Springer
,
Boston, MA
,
1992
), pp.
245
276
.
168.
P.
Indelicato
and
P. J.
Mohr
,
Phys. Rev. A
46
,
172
(
1992
).
169.
W. H.
Furry
,
Phys. Rev.
51
,
125
(
1937
).
170.
W.
Greiner
,
Relativistic Quantum Mechanics
, 3rd ed. (
Springer
,
Berlin, Heidelberg
,
2000
).
171.
M.
Gyulassy
, “
Higher order vacuum polarization for finite radius nuclei: Application to muonic lead and heavy ion collisions
,” Ph.D. thesis,
University of California
,
Berkeley
,
1974
.
172.
J.
Blomqvist
,
Nucl. Phys. B
48
,
95
(
1972
).
173.
A. G.
Fainshtein
,
N. L.
Manakov
, and
A. A.
Nekipelov
,
J. Phys. B: At., Mol. Opt. Phys.
24
,
559
(
1991
).
174.
H. A.
Bethe
,
Phys. Rev.
72
,
339
(
1947
).
175.
P. J.
Mohr
,
Ann. Phys.
88
,
26
(
1974
).
176.
N. J.
Snyderman
,
Ann. Phys.
211
,
43
(
1991
).
177.
V. A.
Yerokhin
and
V. M.
Shabaev
,
Phys. Rev. A
60
,
800
(
1999
).
178.
W.
Pauli
and
F.
Villars
,
Rev. Mod. Phys.
21
,
434
(
1949
).
179.
G.
’t Hooft
and
M.
Veltman
,
Nucl. Phys. B
44
,
189
(
1972
).
180.
C. G.
Bollini
,
J. J.
Giambiagi
, and
A. G.
Domínguez
,
Il Nuovo Cimento
31
,
550
(
1964
).
181.
E.
Zeidler
,
Quantum Field Theory II: Quantum Electrodynamics: A Bridge between Mathematicians and Physicists
(
Springer
,
2009
), Vol. 2.
182.
J. C.
Collins
,
Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion
, Cambridge Monographs on Mathematical Physics (
Cambridge University Press
,
1984
).
183.
K.
Huang
,
Quantum Field Theory: From Operators to Path Integrals
(
John Wiley & Sons
,
2010
).
184.
K.
Huang
,
Int. J. Mod. Phys. A
28
,
1330050
(
2013
).
You do not currently have access to this content.