We use molecular dynamics computer simulations to investigate complexation and clustering of branched polymers. In this study, we focus on star and bottle-brush polymers. In our investigation, we identify key factors governing cluster formation of branched amphiphilic polymers and provide guidance for designing and preparing various types of polymer clusters for applications, e.g., in drug delivery or materials science. We observe different kinds of clustering in the polymer systems. Our star polymers consist of several arms of hydrophilic core particles with hydrophobic particles attached to the end of each star arm. We observe that amphiphilic star polymers generally tend to form spherical complexes. In contrast to this, bottle-brush polymers exhibit a larger variety of complex structures. With large grafting density and large side arms, we also observe spherical polymer clusters; however, for low grafting density and shorter side chains, distinct clusters connected by bridging particles are formed. Furthermore, we observe membrane-like clustering of bottle-brush polymers. We employ two different clustering algorithms for further analysis of the obtained structures with respect to shape factors, pair correlation functions, and radii of gyration. We find that the hydrophobic parts of polymers play a crucial role in the formation of the resulting structures during self-assembly. The hydrophilic core parts in star polymers along with steric hindrance lead to a screening effect for the hydrophobic parts of the polymers. With bottle-brush copolymers, the hydrophilic parts of the polymers exhibit a screening effect that is sensitive to the grafting density and side chain lengths along the backbone.

1.
A.
Deffieux
and
M.
Schappacher
,
Polym. Adv. Technol.
7
,
122
(
1996
).
2.
D.
Fournier
,
R.
Hoogenboom
, and
U. S.
Schubert
,
Chem. Soc. Rev.
36
,
1369
(
2007
).
3.
D.
Lanson
,
F.
Ariura
,
M.
Schappacher
,
R.
Borsali
, and
A.
Deffieux
,
Macromolecules
42
,
3942
(
2009
).
4.
M.
Lammens
,
D.
Fournier
,
M. W. M.
Fijten
,
R.
Hoogenboom
, and
F. D.
Prez
,
Macromol. Rapid Commun.
30
,
2049
(
2009
).
5.
M. S.
Um
and
H.-i.
Lee
,
Macromol. Res.
25
,
542
(
2017
).
6.
M.
Morton
,
T. E.
Helminiak
,
S. D.
Gadkary
, and
F.
Bueche
,
J. Polym. Sci.
57
,
471
(
1962
).
7.
J. R.
Schaefgen
and
P. J.
Flory
,
J. Am. Chem. Soc.
70
,
2823
(
1948
).
8.
N.
Hadjichristidis
,
M.
Pitsikalis
,
S.
Pispas
, and
H.
Iatrou
,
Chem. Rev.
101
,
3747
(
2001
).
9.
N.
Hadjichristidis
,
S.
Pispas
,
M.
Pitsikalis
,
H.
Iatrou
, and
C.
Vlahos
,
Branched Polymers I
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1999
), pp.
71
127
.
10.
N.
Hadjichristidis
,
M.
Pitsikalis
,
H.
Iatrou
,
P.
Driva
,
G.
Sakellariou
, and
M.
Chatzichristidi
,
Polymer Science: A Comprehensive Reference
(
Elsevier
,
2012
), pp.
29
111
.
11.
N.
Hadjichristidis
,
K.
Ratkanthwar
,
M.
Pitsikalis
, and
H.
Iatrou
,
Encyclopedia of Polymeric Nanomaterials
(
Springer
,
Berlin, Heidelberg
,
2015
), pp.
2459
2484
.
12.
S.
Kobayashi
and
K.
Müllen
,
Encyclopedia of Polymeric Nanomaterials
(
Springer
,
Berlin, Heidelberg
,
2015
).
13.
M. K.
Mishra
and
S.
Kobayashi
,
Star and Hyperbranched Polymers
(
Marcel Dekker
,
New York
,
1999
).
14.
E. W.
Merrill
,
J. Bio. Mater. Sci. Polym. Ed.
5
,
1
(
1994
).
15.
T. A.
Tockary
,
K.
Osada
,
Q.
Chen
,
K.
Machitani
,
A.
Dirisala
,
S.
Uchida
,
T.
Nomoto
,
K.
Toh
,
Y.
Matsumoto
,
K.
Itaka
,
K.
Nitta
,
K.
Nagayama
, and
K.
Kataoka
,
Macromolecules
46
,
6585
(
2013
).
16.
C. N.
Likos
,
H.
Löwen
,
M.
Watzlawek
,
B.
Abbas
,
O.
Jucknischke
,
J.
Allgaier
, and
D.
Richter
,
Phys. Rev. Lett.
80
,
4450
(
1998
).
17.
A.
Sikorski
and
P.
Romiszowski
,
Macromol. Theory Simul.
8
,
103
(
1999
).
18.
M.
Zhang
and
A. H. E.
Müller
,
J. Polym. Sci., Part A
43
,
3461
(
2005
).
19.
K.
Binder
and
A.
Milchev
,
J. Polym. Sci., Part B
50
,
1515
(
2012
).
20.
Y.
Rouault
and
O. V.
Borisov
,
Macromolecules
29
,
2605
(
1996
).
21.
G.
Koutalas
,
H.
Iatrou
,
D. J.
Lohse
, and
N.
Hadjichristidis
,
Macromolecules
38
,
4996
(
2005
).
22.
S. S.
Sheiko
,
B. S.
Sumerlin
, and
K.
Matyjaszewski
,
Prog. Polym. Sci.
33
,
759
(
2008
).
23.
S. C.
Radzinski
,
J. C.
Foster
, and
J. B.
Matson
,
Macromol. Rapid Commun.
37
,
616
(
2016
).
24.
M.
Ahmadi
,
S.
Pioge
,
C.-A.
Fustin
,
J.-F.
Gohy
, and
E.
van Ruymbeke
,
Soft Matter
13
,
1063
(
2017
).
25.
H.
Luo
,
M.
Szymusiak
,
E. A.
Garcia
,
L. L.
Lock
,
H.
Cui
,
Y.
Liu
, and
M.
Herrera-Alonso
,
Macromolecules
50
,
2201
(
2017
).
26.
A. L.
Liberman‐Martin
,
C. K.
Chu
, and
R. H.
Grubbs
,
Macromol. Rapid Commun.
38
,
1700058
(
2017
).
27.
M. S.
Rocha
,
I. M.
Storm
,
R. F.
Bazoni
,
É. B.
Ramos
,
A.
Hernandez-Garcia
,
M. A.
Cohen Stuart
,
F.
Leermakers
, and
R.
de Vries
,
Macromolecules
51
,
204
(
2018
).
28.
P. E.
Theodorakis
,
H.-P.
Hsu
,
W.
Paul
, and
K.
Binder
,
J. Chem. Phys.
135
,
164903
(
2011
).
29.
J. P.
Berezney
,
A. B.
Marciel
,
C. M.
Schroeder
, and
O. A.
Saleh
,
Phys. Rev. Lett.
119
,
127801
(
2017
).
30.
H.
Maleki
and
P. E.
Theodorakis
,
J. Phys.: Condens. Matter
23
,
505104
(
2011
).
31.
B.
Capone
,
I.
Coluzza
,
F.
LoVerso
,
C. N.
Likos
, and
R.
Blaak
,
Phys. Rev. Lett.
109
,
238301
(
2012
).
32.
G.-L.
He
,
H.
Merlitz
,
J.-U.
Sommer
, and
C.-X.
Wu
,
Macromolecules
40
,
6721
(
2007
).
33.
I. C.
Gârlea
,
D.
Jaramillo-Cano
, and
C. N.
Likos
,
Soft Matter
15
,
3527
(
2019
).
34.
X.-L.
Sun
,
S.
Pei
,
J.-F.
Wang
,
P.
Wang
,
Z.-B.
Liu
, and
J.
Zhang
,
J. Polym. Sci., Part B
55
,
1220
(
2017
).
35.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
,
J. Phys. Chem. B
111
(
27
),
7812
(
2007
).
36.
I.
Lyubimov
,
M. G.
Wessels
, and
A.
Jayaraman
,
Macromolecules
51
,
7586
(
2018
).
37.
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
55
,
3336
(
1971
).
38.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
39.
B.
Gumus
,
M.
Herrera-Alonso
, and
A.
Ramírez-Hernández
,
Soft Matter
16
,
4969
(
2020
).
40.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett. (EPL)
19
,
155
(
1992
).
41.
H. G.
Börner
,
K.
Beers
,
K.
Matyjaszewski
,
S. S.
Sheiko
, and
M.
Möller
,
Macromolecules
34
,
4375
4383
(
2001
).
42.
Z.
Li
,
M.
Tang
,
S.
Liang
,
M.
Zhang
,
G. M.
Biesold
,
Y.
He
,
S.-M.
Hao
,
W.
Choi
,
Y.
Liu
,
J.
Peng
, and
Z.
Lin
,
Prog. Polym. Sci.
116
,
101387
(
2021
).
43.
M. O.
Steinhauser
,
Computational Multiscale Modeling of Fluids and Solids: Theory and Applications
, 2nd ed. (
Springer
,
Berlin, Heidelberg
,
2017
).
44.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
45.
M. O.
Steinhauser
,
Recent Res. Dev. Phys.
7
,
59
97
(
2006
).
46.
L. R.
Forrest
and
M. S. P.
Sansom
,
Curr. Opin. Struct. Biol.
10
,
174
(
2000
).
47.
S. O.
Nielsen
,
C. F.
Lopez
,
G.
Srinivas
, and
M. L.
Klein
,
J. Phys.: Condens. Matter
16
,
R481
(
2004
).
48.
C. J.
Woods
and
A. J.
Mulholland
, “
Multiscale modelling of biological systems
,” in , edited by A. Hinchliffe (
Royal Society of Chemistry
,
2008
), Vol. 5, pp.
13
50
.
49.
M. O.
Steinhauser
,
Mech. Time-Depend. Mater.
12
,
291
(
2008
).
50.
M. O.
Steinhauser
,
J.
Schneider
, and
A.
Blumen
,
J. Chem. Phys.
130
,
164902
(
2009
).
51.
T.
Schindler
,
D.
Kröner
, and
M. O.
Steinhauser
,
Biochim. Biophys. Acta
1858
,
1955
(
2016
).
52.
M. O.
Steinhauser
,
Multiscale Modeling and Simulation of Shock Wave-Induced Failure in Materials Science
(
Springer Wiesbaden
,
Wiesbaden
,
2018
).
53.
C.
Peter
and
K.
Kremer
,
Soft Matter
5
,
4357
(
2009
).
54.
I. R.
Cooke
,
K.
Kremer
, and
M.
Deserno
,
Phys. Rev. E
72
,
011506
(
2005
).
55.
I. R.
Cooke
and
M.
Deserno
,
J. Chem. Phys.
123
,
224710
(
2005
).
56.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
58.
S.
Whittington
,
J. E. G.
Lipson
,
M. K.
Wilkinson
, and
D. S.
Gaunt
,
Macromolecules
19
,
2141
1245
(
1986
).
59.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
60.
D. J.
Walsh
and
D.
Guironnet
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
1538
(
2019
).
61.
A. J.
Moreno
and
F.
Lo Verso
,
Soft Matter
14
,
7083
(
2018
).
62.
M.
Ester
,
H.-P.
Kriegel
,
J.
Sander
,
X.
Xu
 et al.,
Kdd
, in KDD-96 Proceedings (
Association for the Advancement of Artificial Intelligence
,
1996
), Vol. 96, pp.
226
231
.
63.
R.
Fenyves
,
M.
Schmutz
,
I. J.
Horner
,
F. V.
Bright
, and
J.
Rzayev
,
J. Am. Chem. Soc.
136
,
7762
(
2014
).
64.
C. M.
Bishop
,
Pattern Recognition and Machine Learning
, 1st ed. (
Springer
,
London
,
2006
).
65.
Handbook of Big Data Analytics
, 1st ed., edited by
W. K.
Härdle
,
H. H.-S.
Lu
, and
X.
Shen
(
Springer
,
2018
).
66.
J.
MacQueen
 et al.,
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
(
University of California
,
Los Angles, Oakland, CA
,
1967
), Vol. 1, pp.
281
297
.
67.
R. R.
Sokal
, and
C. D.
Michener
,
Univ. Kansas, Sci. Bull.
38
,
1409
1438
(
1958
).
68.
J. H.
Ward
, Jr.
,
J. Am. Stat. Assoc.
58
,
236
(
1963
).
69.
L.
Kaufman
and
P. J.
Rousseeuw
,
Finding Groups in Data: An Introduction to Cluster Analysis
(
John Wiley & Sons
,
2009
), Vol. 344.
70.
M.
Kschischo
,
R.
Kern
,
C.
Gieger
,
M.
Steinhauser
, and
R.
Tolle
,
Appl. Bioinf.
4
,
75
(
2005
).
71.
H. P.
Kriegel
,
P.
Kröger
,
J.
Sander
, and
A.
Zimek
,
WIREs Data Min. Knowl. Discovery
1
,
231
(
2011
).
72.
M. O.
Steinhauser
,
J. Chem. Phys.
122
,
094901
(
2005
).
73.
Q.
Cao
,
C.
Zuo
,
L.
Li
, and
H.
He
,
Soft Matter
7
,
6522
(
2011
).
You do not currently have access to this content.