Materials that exhibit plasmonic response in the UV region can be advantageous for many applications, such as biological photodegradation, photocatalysis, disinfection, and bioimaging. Transition metal nitrides have recently emerged as chemically and thermally stable alternatives to metal-based plasmonic materials. However, most free-standing nitride nanostructures explored so far have plasmonic responses in the visible and near-IR regions. Herein, we report the synthesis of UV-plasmonic Cr2N nanoparticles using a solid-state nitridation reaction. The nanoparticles had an average diameter of 9 ± 5 nm and a positively charged surface that yields stable colloidal suspension. The particles were composed of a crystalline nitride core and an amorphous oxide/oxynitride shell whose thickness varied between 1 and 7 nm. Calculations performed using the finite element method predicted the localized surface plasmon resonance (LSPR) for these nanoparticles to be in the UV-C region (100–280 nm). While a distinctive LSPR peak could not be observed using absorbance measurements, low-loss electron energy loss spectroscopy showed the presence of surface plasmons between 80 and 250 nm (or ∼5 to 15 eV) and bulk plasmons centered around 50–62 nm (or ∼20 to 25 eV). Plasmonic coupling was also observed between the nanoparticles, resulting in resonances between 250 and 400 nm (or ∼2.5 to 5 eV).

1.
I.
Ashraf
,
S.
Rizwan
, and
M.
Iqbal
, “
A comprehensive review on the synthesis and energy applications of nano-structured metal nitrides
,”
Front. Mater.
7
,
181
(
2020
).
2.
R. A.
Karaballi
,
Y. E.
Monfared
, and
M.
Dasog
, “
Overview of synthetic methods to prepare plasmonic transition-metal nitride nanoparticles
,”
Chem. Eur. J.
26
,
8499
(
2020
).
3.
M.
Parvizian
and
J.
De Roo
, “
Precursor chemistry of metal nitride nanocrystals
,”
Nanoscale
13
,
18865
(
2021
).
4.
M.
Dasog
, “
Transition metal nitrides are heating up the field of plasmonics
,”
Chem. Mater.
34
,
4249
(
2022
).
5.
M. J.
Margeson
and
M.
Dasog
, “
Plasmonic metal nitrides for solar-driven water evaporation
,”
Environ. Sci.: Water Res. Technol.
6
,
3169
(
2020
).
6.
G. V.
Naik
,
J. L.
Schroeder
,
X.
Ni
,
A. V.
Kildishev
,
T. D.
Sands
, and
A.
Boltasseva
, “
Titanium nitride as a plasmonic material for visible and near-infrared wavelengths
,”
Opt. Mater. Express
,
2
,
478
(
2012
).
7.
U.
Guler
,
S.
Suslov
,
A. V.
Kildishev
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Colloidal plasmonic titanium nitride nanoparticles: Properties and applications
,”
Nanophotonics
4
,
269
(
2015
).
8.
A. A.
Barragan
,
S.
Hanukovich
,
K.
Bozhilov
,
S. S. R. K. C.
Yamijala
,
B. M.
Wong
,
P.
Christopher
, and
L.
Mangolini
, “
Photochemistry of plasmonic titanium nitride nanocrystals
,”
J. Phys. Chem. C
123
,
21796
(
2019
).
9.
N. T.
Nguyen
,
T.
Yan
,
L.
Wang
,
J. Y. Y.
Loh
,
P. N.
Duchesne
,
C.
Mao
,
P. C.
Li
,
A. A.
Jelle
,
M.
Xia
,
M.
Ghoussoub
,
N. P.
Kherani
,
Z. H.
Lu
, and
G. A.
Ozin
, “
Plasmonic titanium nitride facilitates indium oxide CO2 photocatalysis
,”
Small
16
,
2005754
(
2020
).
10.
I. H.
Ifijen
and
M.
Maliki
, “
A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures
,”
Inorg. Nano-Met. Chem.
(published online 2022).
11.
W.
He
,
K.
Ai
,
C.
Jiang
,
Y.
Li
,
X.
Song
, and
L.
Lu
, “
Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy
,”
Biomaterials
132
,
37
(
2017
).
12.
R. A.
Karaballi
,
G.
Humagain
,
B. R. A.
Fleischman
, and
M.
Dasog
, “
Synthesis of plasmonic group-4 nitride nanocrystals by solid-state metathesis
,”
Angew. Chem., Int. Ed.
58
,
3147
(
2019
).
13.
S.
Exarhos
,
A.
Alvarez-Barragan
,
E.
Aytan
,
A. A.
Balandin
, and
L.
Mangolini
, “
Plasmonic core-shell zirconium nitride-silicon oxynitride nanoparticles
,”
ACS Energy Lett.
3
,
2349
(
2018
).
14.
E.
Traver
,
R. A.
Karaballi
,
Y. E.
Monfared
,
H.
Daurie
,
G. A.
Gagnon
, and
M.
Dasog
, “
TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination
,”
ACS Appl. Nano Mater.
3
,
2787
(
2020
).
15.
R. A.
Karaballi
,
Y. E.
Monfared
, and
M.
Dasog
, “
Photothermal transduction efficiencies of plasmonic group 4 metal nitride nanocrystals
,”
Langmuir
36
,
5058
(
2020
).
16.
D. B.
O’Neill
,
S. K.
Frehan
,
K.
Zhu
,
E.
Zoethout
,
G.
Mul
,
E. C.
Garnett
,
A.
Huijser
, and
S. H. C.
Askes
, “
Ultrafast photoinduced heat generation by plasmonic HfN nanoparticles
,”
Adv. Opt. Mater.
9
,
2100510
(
2021
).
17.
D.
Zhao
,
Z.
Lin
,
W.
Zhu
,
H. J.
Lezec
,
T.
Xu
,
A.
Agrawal
,
C.
Zhang
, and
K.
Huang
, “
Recent advances in ultraviolet nanophotonics: From plasmonics and metamaterials to metasurfaces
,”
Nanophotonics
10
,
2283
(
2021
).
18.
M. W.
Knight
,
N. S.
King
,
L.
Liu
,
H. O.
Everitt
,
P.
Nordlander
, and
N. J.
Halas
, “
Aluminum for plasmonics
,”
ACS Nano
8
,
834
(
2014
).
19.
E.
Ringe
, “
Shapes, plasmonic properties, and reactivity of magnesium nanoparticles
,”
J. Phys. Chem. C
124
,
15665
(
2020
).
20.
M. W.
Knight
,
T.
Coenen
,
Y.
Yang
,
B. J. M.
Brenny
,
M.
Losurdo
,
A. S.
Brown
,
H. O.
Everitt
, and
A.
Polman
, “
Gallium plasmonics: Deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles
,”
ACS Nano
9
,
2049
(
2015
).
21.
J. M.
Sanz
,
D.
Ortiz
,
R.
Alcaraz de la Osa
,
J. M.
Saiz
,
F.
González
,
A. S.
Brown
,
M.
Losurdo
,
H. O.
Everitt
, and
F.
Moreno
, “
UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects
,”
J. Phys. Chem. C
117
,
19606
(
2013
).
22.
J. M.
McMahon
,
G. C.
Schatz
, and
S. K.
Gray
, “
Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi
,”
Phys. Chem. Chem. Phys.
15
,
5415
(
2013
).
23.
S.
Kim
,
J.-M.
Kim
,
J.-E.
Park
, and
J.-M.
Nam
, “
Nonnoble-metal-based plasmonic nanomaterials: Recent advances and future perspectives
,”
Adv. Mater.
30
,
1704528
(
2018
).
24.
M.
Sayed
,
J.
Yu
,
G.
Liu
, and
M.
Jaroniec
, “
Non-noble plasmonic metal-based photocatalysts
,”
Chem. Rev.
122
,
10484
(
2022
).
25.
P.
Patsalas
,
N.
Kalfagiannis
,
S.
Kassavetis
,
G.
Abadias
,
D. V.
Bellas
,
C.
Lekka
, and
E.
Lidorikis
, “
Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics
,”
Mater. Sci. Eng., R
123
,
1
(
2018
).
26.
G.
Gubert
,
R. C.
Oliveira
,
D. S.
Costa
,
G. K.
Metzger
,
I.
Mazzaro
,
G.
Kellermann
,
E.
Ribeiro
,
J.
Varalda
, and
D. H.
Mosca
, “
Single-step formation of Cr2N nanoparticles by pulsed laser irradiation
,”
J. Appl. Phys.
125
,
024301
(
2019
).
27.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to ImageJ: 25 Years of image analysis
,”
Nat. Methods
9
,
671
(
2012
).
28.
I. C.
Bicket
(
2017
). Zenodo, https://zenodo.org/record/807763#.YsuIhnbMLb0
29.
S. M.
Aouadi
,
D. M.
Mihut
,
M. L.
Kuruppu
,
S. R.
Kirkpatrick
, and
S. L.
Rohde
, “
Spectroscopic ellipsometry measurements of chromium nitride coatings
,”
J. Vac. Sci. Technol., A
19
,
2800
(
2001
).
30.
J. R.
Cole
,
N. A.
Mirin
,
M. W.
Knight
,
G. P.
Goodrich
, and
N. J.
Halas
, “
Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications
,”
J. Phys. Chem. C
113
,
12090
(
2009
).
31.
Y. E.
Monfared
and
M.
Dasog
, “
Computational investigation of the plasmonic properties of TiN, ZrN, and HfN nanoparticles: The role of particle size, medium, and surface oxidation
,”
Can. J. Chem.
99
,
576
(
2021
).
32.
M. M.
Abdullah
,
F. M.
Rajab
, and
S. M.
Al-Abbas
, “
Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties
,”
AIP Adv.
4
,
027121
(
2014
).
33.
L.
Shen
and
N.
Wang
, “
Effect of nitrogen pressure on the structure of Cr-N, Ta-N, Mo-N, and W-N nanocrystals synthesized by arc discharge
,”
J. Nanomater.
2011
,
1
.
34.
Z.
Guo
,
J.
Xiong
,
M.
Yang
,
S.
Xiong
,
J.
Chen
,
Y.
Wu
,
H.
Fan
,
L.
Sun
,
J.
Wang
, and
H.
Wang
, “
Dispersion of nano-TiN powder in aqueous media
,”
J. Alloys Compd.
493
,
362
(
2010
).
35.
J.-X.
Zhang
,
D.-L.
Jiang
,
S.-H.
Tan
,
L.-H.
Gui
, and
M.-L.
Ruan
, “
Aqueous processing of titanium carbide green sheets
,”
J. Am. Ceram. Soc.
84
,
2537
(
2001
).
36.
S.
Kamble
,
S.
Agrawal
,
S.
Cherumukkil
,
V.
Sharma
,
R. V.
Jasra
, and
P.
Munshi
, “
Revisiting zeta potential, the key feature of interfacial phenomena, with applications and recent advancements
,”
ChemistrySelect
7
,
e202103084
(
2022
).
37.
V. K.
Rai
,
N.
Mishra
,
K. S.
Yadav
, and
N. P.
Yadav
, “
Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications
,”
J. Controlled Release
270
,
203
(
2018
).
38.
A.
Kadari
,
T.
Schemme
,
D.
Kadri
, and
J.
Wollschläger
, “
XPS and morphological properties of Cr2O3 thin films grown by thermal evaporation method
,”
Results Phys.
7
,
3124
(
2017
).
39.
D.
Gazzoli
,
M.
Occhiuzzi
,
A.
Cimino
,
G.
Minelli
, and
M.
Valigi
, “
Chromium oxidation states and XPS analysis of the chromia/zirconia system
,”
Surf. Interface Anal.
18
,
315
(
1992
).
40.
M.
Aronniemi
,
J.
Sainio
, and
J.
Lahtinen
, “
Chemical state quantification of iron and chromium oxides using XPS: The effect of the background subtraction method
,”
Surf. Sci.
578
,
108
(
2005
).
41.
A.
Lippitz
and
T.
Hübert
, “
XPS investigations of chromium nitride thin films
,”
Surf. Coat. Technol.
200
,
250
(
2005
).
42.
W.
Zhao
and
F. J.
DiSalvo
, “
Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure
,”
Chem. Commun.
51
,
4876
(
2015
).
43.
K.
Jagannathan
,
A.
Srinivasan
, and
C. N. R.
Rao
, “
An XPS study of the surface oxidation states of metals in some oxides catalysts
,”
J. Catal.
69
,
418
(
1981
).
44.
A.
Alvarez Barragan
,
N. V.
Ilawe
,
L.
Zhong
,
B. M.
Wong
, and
L.
Mangolini
, “
A non-thermal plasma route to plasmonic TiN nanoparticles
,”
J. Phys. Chem. C
121
,
2316
(
2017
).
45.
P. R.
West
,
S.
Ishii
,
G. V.
Naik
,
N. K.
Emani
,
V. M.
Shalaev
, and
A.
Boltasseva
, “
Searching for better plasmonic materials
,”
Laser Photonics Rev.
4
,
795
(
2010
).
46.
Y.
Wu
,
G.
Li
, and
J. P.
Camden
, “
Probing nanoparticle plasmons with electron energy loss spectroscopy
,”
Chem. Rev.
118
,
2994
(
2018
).
47.
A.
Losquin
,
L. F.
Zagonel
,
V.
Myroshnychenko
,
B.
Rodríguez-González
,
M.
Tencé
,
L.
Scarabelli
,
J.
Förstner
,
L. M.
Liz-Marzán
,
F. J.
García de Abajo
,
O.
Stéphan
, and
M.
Kociak
, “
Unveiling nanometer scale extinction and scateering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements
,”
Nano Lett.
15
,
1229
(
2015
).
48.
P.
Alonso-González
,
P.
Albella
,
F.
Neubrech
,
C.
Huck
,
J.
Chen
,
F.
Golmar
,
F.
Casanova
,
L. E.
Hueso
,
A.
Pucci
,
J.
Aizpurua
, and
R.
Hillenbrand
, “
Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas
,”
Phys. Rev. Lett.
110
,
203902
(
2013
).
49.
J.
Zuloaga
and
P.
Nordlander
, “
On the energy shift between near-field and far-field peak intensities in localized plasmon systems
,”
Nano Lett.
11
,
1280
(
2011
).
50.
P. A.
Crozier
, “
Vibrational and valence aloof beam EELS: A potential tool for nondestructive characterization of nanoparticles surfaces
,”
Ultramicroscopy
180
,
104
(
2017
).

Supplementary Material

You do not currently have access to this content.