The assembly of colloidal cubic diamond is a challenging process since the shape and interaction parameters and the thermodynamic conditions where this structure is stable are elusive. The simultaneous use of shape-anisotropic particles and strong directional interactions has proven to be a successful path to exclusively nucleate this structure. Here, using molecular dynamics simulations, we explore in detail the conditions where the nucleation of cubic diamond from tetrahedral building blocks is favored. In particular, we focus on the effect of depletion and DNA-mediated interactions to form and stabilize this cubic diamond crystal. We find that a particular balance between the strength and the range of the depletion interactions enhances the self-assembly of stable cubic diamond, leading to a narrow region where this structure is nucleated. Moreover, we determine that stronger short-range depletion attractions may arrest the system, leading to the formation of percolating diamond networks or fully disordered gel structures. Accordingly, the internal arrangements of these structures exhibit a distinct variation in terms of fractal dimension and the presence of six-membered rings that increasingly acquire internal strain as the arrest gets more pronounced. With these results, we provide a clear route for the self-assembly of cubic colloidal diamond, toward the realization of crystals with superior photonic properties.

1.
S.
Sacanna
and
D. J.
Pine
,
Curr. Opin. Colloid Interface Sci.
16
,
96
(
2011
).
2.
M.
Liu
,
X.
Zheng
,
V.
Grebe
,
D. J.
Pine
, and
M.
Weck
,
Nat. Mater.
19
,
1354
(
2020
).
3.
W.
Li
,
H.
Palis
,
R.
Mérindol
,
J.
Majimel
,
S.
Ravaine
, and
E.
Duguet
,
Chem. Soc. Rev.
49
,
1955
(
2020
).
4.
V. N.
Manoharan
,
Science
349
,
1253751
(
2015
).
5.
F.
Li
,
D. P.
Josephson
, and
A.
Stein
,
Angew. Chem., Int. Ed.
50
,
360
(
2011
).
6.
J.
Zhang
,
Z.
Sun
, and
B.
Yang
,
Curr. Opin. Colloid Interface Sci.
14
,
103
(
2009
).
7.
É.
Ducrot
,
M.
He
,
G.-R.
Yi
, and
D. J.
Pine
,
Nat. Mater.
16
,
652
(
2017
).
8.
M.
Maldovan
and
E. L.
Thomas
,
Nat. Mater.
3
,
593
(
2004
).
9.
W. H.
Brown
,
T.
Poon
, and
T.
Poon
,
Introduction to Organic Chemistry
(
John Wiley & Sons
Hoboken, NJ
,
2014
), Vol. 7.
10.
E.
Bianchi
,
R.
Blaak
, and
C. N.
Likos
,
Phys. Chem. Chem. Phys.
13
,
6397
(
2011
).
11.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
,
J. Chem. Phys.
132
,
184501
(
2010
).
12.
E. G.
Noya
,
C.
Vega
,
J. P. K.
Doye
, and
A. A.
Louis
,
J. Chem. Phys.
132
,
234511
(
2010
).
13.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
,
J. Chem. Phys.
134
,
174502
(
2011
).
14.
F.
Leoni
and
J.
Russo
,
Phys. Rev. X
11
,
031006
(
2021
).
15.
G.
Doppelbauer
,
E. G.
Noya
,
E.
Bianchi
, and
G.
Kahl
,
J. Phys.: Condens. Matter
24
,
284124
(
2012
).
16.
E. G.
Noya
,
I.
Zubieta
,
D. J.
Pine
, and
F.
Sciortino
,
J. Chem. Phys.
151
,
094502
(
2019
).
17.
F.
Romano
,
J.
Russo
,
L.
Kroc
, and
P.
Šulc
,
Phys. Rev. Lett.
125
,
118003
(
2020
).
18.
Y.
Ma
,
J. C.
Aulicino
, and
A. L.
Ferguson
,
J. Phys. Chem. B
125
,
2398
(
2021
).
19.
Y.
Ma
and
A. L.
Ferguson
,
Soft Matter
15
,
8808
(
2019
).
20.
N.
Patra
and
A. V.
Tkachenko
,
Phys. Rev. E
98
,
032611
(
2018
).
21.
L.
Rovigatti
,
J.
Russo
,
F.
Romano
,
M.
Matthies
,
L.
Kroc
, and
P.
Šulc
, “
A simple solution to the problem of self-assembling cubic diamond crystals
,” arXiv:2205.10680 (
2022
).
22.
Y.
Tian
,
J. R.
Lhermitte
,
L.
Bai
,
T.
Vo
,
H. L.
Xin
,
H.
Li
,
R.
Li
,
M.
Fukuto
,
K. G.
Yager
,
J. S.
Kahn
 et al.,
Nat. Mater.
19
,
789
(
2020
).
23.
W.
Liu
,
M.
Tagawa
,
H. L.
Xin
,
T.
Wang
,
H.
Emamy
,
H.
Li
,
K. G.
Yager
,
F. W.
Starr
,
A. V.
Tkachenko
, and
O.
Gang
,
Science
351
,
582
(
2016
).
24.
D.
Morphew
,
J.
Shaw
,
C.
Avins
, and
D.
Chakrabarti
,
ACS Nano
12
,
2355
(
2018
).
25.
A.
Neophytou
,
D.
Chakrabarti
, and
F.
Sciortino
,
Proc. Natl. Acad. Sci. U. S. A.
118
(
2021
).
26.
A.
Neophytou
,
V. N.
Manoharan
, and
D.
Chakrabarti
,
ACS Nano
15
,
2668
(
2021
).
27.
A. B.
Rao
,
J.
Shaw
,
A.
Neophytou
,
D.
Morphew
,
F.
Sciortino
,
R. L.
Johnston
, and
D.
Chakrabarti
,
ACS Nano
14
,
5348
(
2020
).
28.
P. F.
Damasceno
,
M.
Engel
, and
S. C.
Glotzer
,
Acs Nano
6
,
609
(
2012
).
29.
Y.
Zhou
,
R. K.
Cersonsky
, and
S. C.
Glotzer
,
Soft Matter
18
,
304
(
2022
).
30.
M.
He
,
J. P.
Gales
,
É.
Ducrot
,
Z.
Gong
,
G.-R.
Yi
,
S.
Sacanna
, and
D. J.
Pine
,
Nature
585
,
524
(
2020
).
31.
Z.
Gong
,
T.
Hueckel
,
G.-R.
Yi
, and
S.
Sacanna
,
Nature
550
,
234
(
2017
).
32.
K.
Miyazaki
,
K. S.
Schweizer
,
D.
Thirumalai
,
R.
Tuinier
, and
E.
Zaccarelli
, “
The Asakura–Oosawa theory: Entropic forces in physics, biology, and soft matter
,”
J. Chem. Phys.
156
,
080401
(
2022
).
33.
E.
Zaccarelli
,
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
34.
J.
Ruiz-Franco
and
E.
Zaccarelli
,
Annu. Rev. Condens. Matter Phys.
12
,
51
(
2021
).
35.
C.
Patrick Royall
,
S. R.
Williams
,
T.
Ohtsuka
, and
H.
Tanaka
,
Nat. Mater.
7
,
556
(
2008
).
36.
S.
Kumar
,
M.-J.
Lee
,
V.
Aswal
, and
S.-M.
Choi
,
Phys. Rev. E
87
,
042315
(
2013
).
37.
L.
Rossi
,
S.
Sacanna
,
W. T. M.
Irvine
,
P. M.
Chaikin
,
D. J.
Pine
, and
A. P.
Philipse
,
Soft Matter
7
,
4139
(
2011
).
38.
D. J.
Kraft
,
R.
Ni
,
F.
Smallenburg
,
M.
Hermes
,
K.
Yoon
,
D. A.
Weitz
,
A.
van Blaaderen
,
J.
Groenewold
,
M.
Dijkstra
, and
W. K.
Kegel
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
10787
(
2012
).
39.
S.
Asakura
and
F.
Oosawa
,
J. Polym. Sci.
33
,
183
(
1958
).
40.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
 et al.,
Comput. Phys. Commun.
271
,
108171
(
2022
).
41.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
42.
A. H.
Nguyen
and
V.
Molinero
,
J. Phys. Chem. B
119
,
9369
(
2015
).
43.
A.
Fortini
,
E.
Sanz
, and
M.
Dijkstra
,
Phys. Rev. E
78
,
041402
(
2008
).
44.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
,
Nature
453
,
499
(
2008
).
45.
F.
Soto-Bustamante
,
N. E.
Valadez-Pérez
,
Y.
Liu
,
R.
Castañeda-Priego
, and
M.
Laurati
,
J. Colloid Interface Sci.
618
,
442
(
2022
).
46.
E.
Zaccarelli
,
P. J.
Lu
,
F.
Ciulla
,
D. A.
Waitz
, and
F.
Sciortino
,
J. Phys.: Condens. Matter
20
,
494242
(
2008
).
48.
G. M.
Coli
,
R.
van Damme
,
C. P.
Royall
, and
M.
Dijkstra
, “
Crystal polymorph selection mechanism of hard spheres hidden in the fluid
,” arXiv:2108.07583 (
2021
).
49.
S.
Griffiths
,
F.
Turci
, and
C. P.
Royall
,
J. Chem. Phys.
146
,
014905
(
2017
).
50.
S.
Marín-Aguilar
,
H. H.
Wensink
,
G.
Foffi
, and
F.
Smallenburg
,
Phys. Rev. Lett.
124
,
208005
(
2020
).
51.
K. B.
Wiberg
,
Angew. Chem., Int. Ed. Engl.
25
,
312
(
1986
).
52.
J. J.
Gagnepain
and
C.
Roques-Carmes
,
Wear
109
,
119
(
1986
).
53.
J.
Ruiz-Franco
,
F.
Camerin
,
N.
Gnan
, and
E.
Zaccarelli
,
Phys. Rev. Mater.
4
,
045601
(
2020
).
54.
C.
Hertlein
,
L.
Helden
,
A.
Gambassi
,
S.
Dietrich
, and
C.
Bechinger
,
Nature
451
,
172
(
2008
).
55.
L.
Rossi
,
V.
Soni
,
D. J.
Ashton
,
D. J.
Pine
,
A. P.
Philipse
,
P. M.
Chaikin
,
M.
Dijkstra
,
S.
Sacanna
, and
W. T. M.
Irvine
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
5286
(
2015
).
56.
X.
Xing
,
L.
Hua
, and
T.
Ngai
,
Curr. Opin. Colloid Interface Sci.
20
,
54
(
2015
).
57.
M. J.
Bergman
,
N.
Gnan
,
M.
Obiols-Rabasa
,
J.-M.
Meijer
,
L.
Rovigatti
,
E.
Zaccarelli
, and
P.
Schurtenberger
,
Nat. Commun.
9
,
5039
(
2018
).

Supplementary Material

You do not currently have access to this content.