The Hartree–Fock (HF) approximation has been an important tool for quantum-chemical calculations since its earliest appearance in the late 1920s and remains the starting point of most single-reference methods in use today. Intuition suggests that the HF kinetic energy should not exceed the exact kinetic energy; but no proof of this conjecture exists, despite a near century of development. Beginning from a generalized virial theorem derived from scaling considerations, we derive a general expression for the kinetic energy difference that applies to all systems. For any atom or ion, this trivially reduces to the well-known result that the total energy is the negative of the kinetic energy and, since correlation energies are never positive, proves the conjecture in this case. Similar considerations apply to molecules at their equilibrium bond lengths. We use highly precise calculations on Hooke’s atom (two electrons in a parabolic well) to test the conjecture in a nontrivial case and to parameterize the difference between density functional and HF quantities, but find no violations of the conjecture.

1.
D. R.
Hartree
, “
The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods
,”
Math. Proc. Cambridge Philos. Soc.
24
,
89
110
(
1928
).
2.
J. C.
Slater
, “
The self consistent field and the structure of atoms
,”
Phys. Rev.
32
,
339
348
(
1928
).
3.
V.
Fock
, “
Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems
,”
Z. Phys.
61
,
126
148
(
1930
).
4.
D.
Cremer
, “
Møller–Plesset perturbation theory: From small molecule methods to methods for thousands of atoms
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
509
530
(
2011
).
5.
H. G.
Kummel
, “
A biography of the coupled cluster method
,” in
Recent Progress in Many-Body Theories
(
World Scientific Publishing Company
,
2002
), pp.
334
348
.
6.
L.
Hedin
, “
On correlation effects in electron spectroscopies and the GW approximation
,”
J. Phys.: Condens. Matter
11
,
R489
R528
(
1999
).
7.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
8.
W.
Kohn
, “
Nobel Lecture: Electronic structure of matter-wave functions and density functionals
,”
Rev. Mod. Phys.
71
,
1253
(
1999
).
9.
L. O.
Wagner
,
Z.-h.
Yang
, and
K.
Burke
, “
Exact conditions and their relevance in TDDFT
,” in
Fundamentals of Time-Dependent Density Functional Theory
, edited by
M. A.
Marques
,
N. T.
Maitra
,
F. M.
Nogueira
,
E.
Gross
, and
A.
Rubio
(
Springer
,
Berlin, Heidelberg
,
2012
), pp.
101
123
.
10.
R. N.
Hill
, “
Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method
,”
J. Chem. Phys.
83
,
1173
1196
(
1985
).
11.
P. M. W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
M. J.
Frisch
, “
An investigation of the performance of a hybrid of Hartree-Fock and density functional theory
,”
Int. J. Quantum Chem.
44
,
319
331
(
1992
).
12.
S.
Song
,
S.
Vuckovic
,
E.
Sim
, and
K.
Burke
, “
Density-corrected DFT explained: Questions and answers
,”
J. Chem. Theory Comput.
18
,
817
827
(
2022
).
13.
S.
Nam
,
S.
Song
,
E.
Sim
, and
K.
Burke
, “
Measuring density-driven errors using Kohn–Sham inversion
,”
J. Chem. Theory Comput.
16
,
5014
5023
(
2020
).
14.
S.
Nam
,
R. J.
McCarty
,
H.
Park
, and
E.
Sim
, “
Ks-pies: Kohn–Sham inversion toolkit
,”
J. Chem. Phys.
154
,
124122
(
2021
).
15.
S.
Giarrusso
and
A.
Pribram-Jones
, “
Comparing correlation components and approximations in Hartree–Fock and Kohn–Sham theories via an analytical test case study
,”
J. Chem. Phys.
157
,
054102
(
2022
).
16.
C. A.
Coulson
and
I.
Fischer
, “
XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule
,”
Philos. Mag.
40
,
386
393
(
1949
).
17.
D. J.
Carrascal
,
J.
Ferrer
,
J. C.
Smith
, and
K.
Burke
, “
The Hubbard dimer: A density functional case study of a many-body problem
,”
J. Phys.: Condens. Matter
27
,
393001
(
2015
).
18.
M.
Penz
and
R.
van Leeuwen
, “
Density-functional theory on graphs
,”
J. Chem. Phys.
155
,
244111
(
2021
).
19.
J. O.
Hirschfelder
and
J. F.
Kincaid
, “
Application of the virial theorem to approximate molecular and metallic eigenfunctions
,”
Phys. Rev.
52
,
658
661
(
1937
).
20.
P.-O.
Löwdin
, “
Scaling problem, virial theorem, and connected relations in quantum mechanics
,”
J. Mol. Spectrosc.
3
,
46
66
(
1959
).
21.
P.-O.
Löwdin
, “
Quantum theory of many-particle systems. III. Extension of the Hartree-Fock scheme to include degenerate systems and correlation effects
,”
Phys. Rev.
97
,
1509
1520
(
1955
).
22.
E. H.
Lieb
and
B.
Simon
, “
The Thomas-Fermi theory of atoms, molecules and solids
,”
Adv. Math.
23
,
22
116
(
1977
).
23.
E. H.
Lieb
, “
Thomas-Fermi and related theories of atoms and molecules
,”
Rev. Mod. Phys.
53
,
603
641
(
1981
).
24.
J. G.
Conlon
, “
Semi-classical limit theorems for Hartree-Fock theory
,”
Commun. Math. Phys.
88
,
133
150
(
1983
).
25.
W. L.
Clinton
, “
Forces in molecules. I. Application of the virial theorem
,”
J. Chem. Phys.
33
,
1603
1606
(
1960
).
26.
M.
Levy
and
J. P.
Perdew
, “
Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms
,”
Phys. Rev. A
32
,
2010
(
1985
).
27.
C.-J.
Huang
and
C. J.
Umrigar
, “
Local correlation energies of two-electron atoms and model systems
,”
Phys. Rev. A
56
,
290
296
(
1997
).
28.
E. K. U.
Gross
,
M.
Petersilka
, and
T.
Grabo
, “
Conventional quantum chemical correlation energy versus density-functional correlation energy
,” in
Chemical Applications of Density-Functional Theory
(
ACS Publications
,
1996
), Vol. 629, pp.
42
53
.
29.
N. R.
Kestner
and
O.
Sinanoḡlu
, “
Study of electron correlation in helium-like systems using an exactly soluble model
,”
Phys. Rev.
128
,
2687
2692
(
1962
).
30.
M.
Taut
, “
Two electrons in an external oscillator potential: Particular analytic solutions of a Coulomb correlation problem
,”
Phys. Rev. A
48
,
3561
3566
(
1993
).
31.
S.
Ivanov
,
K.
Burke
, and
M.
Levy
, “
Exact high-density limit of correlation potential for two-electron density
,”
J. Chem. Phys.
110
,
10262
(
1999
).
32.
D. P.
O’Neill
and
P. M. W.
Gill
, “
Wave functions and two-electron probability distributions of the Hooke’s-law atom and helium
,”
Phys. Rev. A
68
,
022505
(
2003
).
33.
J.
Cioslowski
and
K.
Pernal
, “
The ground state of harmonium
,”
J. Chem. Phys.
113
,
8434
8443
(
2000
).
34.
P. M. W.
Gill
and
D. P.
O’Neill
, “
Electron correlation in Hooke’s law atom in the high-density limit
,”
J. Chem. Phys.
122
,
094110
(
2005
).
35.
R. P.
Feynman
, “
Forces in molecules
,”
Phys. Rev.
56
,
340
343
(
1939
).
36.
R. E.
Stanton
, “
Hellmann‐Feynman theorem and correlation energies
,”
J. Chem. Phys.
36
,
1298
1300
(
1962
).
37.
E.
Yurtsever
and
J.
Hinze
, “
The Hellmann–Feynman theorem for open-shell and multiconfiguration SCF wave functions
,”
J. Chem. Phys.
71
,
1511
(
1979
).
38.
R. J.
White
and
W. B.
Brown
, “
Perturbation theory of the Hooke’s law model for the two-electron atom
,”
J. Chem. Phys.
53
,
3869
3879
(
1970
).
39.
C. F.
von Weizsäcker
, “
Zur theorie der kernmassen
,”
Z. Phys. A: Hadrons Nucl.
96
,
431
458
(
1935
).
40.
J. C.
Slater
, “
The virial and molecular structure
,”
J. Chem. Phys.
1
,
687
(
1933
).
41.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).

Supplementary Material

You do not currently have access to this content.