The growth pattern and nucleation rate of carbon dioxide hydrate critically depend on the precise value of the hydrate–water interfacial free energy. There exist in the literature only two independent experimental measurements of this thermodynamic magnitude: one obtained by Uchida et al. [J. Phys. Chem. B 106, 8202 (2002)], 28(6) mJ/m2, and the other by Anderson and co-workers [J. Phys. Chem. B 107, 3507 (2003)], 30(3) mJ/m2. Recently, Algaba et al. [J. Colloid Interface Sci. 623, 354 (2022)] have extended the mold integration method proposed by Espinosa and co-workers [J. Chem. Phys. 141, 134709 (2014)] to deal with the CO2 hydrate–water interfacial free energy (mold integration–guest or MI-H). Computer simulations predict a value of 29(2) mJ/m2, in excellent agreement with experimental data. The method is based on the use of a mold of attractive wells located at the crystallographic positions of the oxygen atoms of water molecules in equilibrium hydrate structures to induce the formation of a thin hydrate slab in the liquid phase at coexistence conditions. We propose here a new implementation of the mold integration technique using a mold of attractive wells located now at the crystallographic positions of the carbon atoms of the CO2 molecules in the equilibrium hydrate structure. We find that the new mold integration–guest methodology, which does not introduce positional or orientational information of the water molecules in the hydrate phase, is able to induce the formation of CO2 hydrates in an efficient way. More importantly, this new version of the method predicts a CO2 hydrate–water interfacial energy value of 30(2) mJ/m2, in excellent agreement with experimental data, which is also fully consistent with the results obtained using the previous methodology.

1.
E. D.
Sloan
and
C.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
CRC Press
,
New York
,
2008
).
2.
A. Y.
Manakov
,
S. V.
Goryainov
,
A. V.
Kurnosov
,
A. Y.
Likhacheva
,
Y. A.
Dyadin
, and
E. G.
Larionov
,
J. Phys. Chem. B
107
,
7861
(
2003
).
3.
T.
Makino
,
T.
Sugahara
, and
K.
Ohgaki
,
J. Chem. Eng. Data
50
,
2058
(
2005
).
4.
5.
C. A.
Koh
,
A. K.
Sum
, and
E. D.
Sloan
,
J. Nat. Gas Sci. Eng.
8
,
132
(
2012
).
6.
7.
M.
Yang
,
Y.
Song
,
L.
Jiang
,
Y.
Zhao
,
X.
Ruan
,
Y.
Zhang
, and
S.
Wang
,
Appl. Energy
116
,
26
(
2014
).
8.
M.
Ricaurte
,
C.
Dicharry
,
X.
Renaud
, and
J.-P.
Torré
,
Fuel
122
,
206
(
2014
).
9.
V.
Chihaia
,
S.
Adams
, and
W. F.
Kuhs
,
Chem. Phys.
317
,
208
(
2005
).
10.
B.
Peters
,
N. E. R.
Zimmermann
,
G. T.
Beckham
,
J. W.
Tester
, and
B. L.
Trout
,
J. Am. Chem. Soc.
130
,
17342
(
2008
).
11.
N. J.
English
and
J. S.
Tse
,
Phys. Rev. Lett.
103
,
015901
(
2009
).
12.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
1997
).
13.
A. W.
Adamson
and
A. P.
Gast
,
Physical Chemistry of Surfaces
(
John Wiley & Sons
,
1997
).
14.
R. D.
Weir
and
E. T. W.
de Loos
, “
Chapter 15: Measurement of surface and interfacial tensions
,” in
Measurement of the Thermodynamic Properties of Multiple Phases
, Experimental Thermodynamics (
Elsevier
,
2005
).
15.
B. H.
Alexander
,
M. H.
Dawson
, and
H. P.
Kling
,
J. Appl. Phys.
22
,
439
(
1951
).
16.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
,
J. Phys. Chem. C
120
,
8068
(
2016
).
17.
T.
Uchida
,
T.
Ebinuma
, and
T.
Ishizaki
,
J. Phys. Chem. B
103
,
3659
(
1999
).
18.
T.
Uchida
,
T.
Ebinuma
,
S.
Takeya
,
J.
Nagao
, and
H.
Narita
,
J. Phys. Chem. B
106
,
820
(
2002
).
19.
R.
Anderson
,
M.
Llamedo
,
B.
Tohidi
, and
R. W.
Burgass
,
J. Phys. Chem. B
107
,
3500
(
2003
).
20.
R.
Anderson
,
M.
Llamedo
,
B.
Tohidi
, and
R. W.
Burgass
,
J. Phys. Chem. B
107
,
3507
(
2003
).
21.
Y.
Seo
,
H.
Lee
, and
T.
Uchida
,
Langmuir
18
,
9164
(
2002
).
22.
W.
Zhang
,
J. W.
Wilder
, and
D. H.
Smith
,
J. Phys. Chem. B
107
,
13084
(
2003
).
23.
D. H.
Smith
,
J. W.
Wilder
, and
K.
Seshadri
,
AIChE J.
48
,
393
(
2002
).
24.
D. H.
Smith
,
K.
Seshadri
,
T.
Uchida
, and
J. W.
Wilder
,
AIChE J.
50
,
1589
(
2004
).
25.
S.-P.
Kang
,
J.-W.
Lee
, and
H.-J.
Ryu
,
Fluid Phase Equilib.
274
,
68
(
2008
).
26.
Y.
Zhang
,
X.-S.
Li
,
Y.
Wang
,
Z.-Y.
Chen
, and
K.-F.
Yan
,
Fluid Phase Equilib.
413
,
110
(
2016
).
27.
H.
Liu
,
S.
Zhan
,
P.
Guo
,
S.
Fan
, and
S.
Zhang
,
Chem. Eng. J.
349
,
775
(
2018
).
28.
M.
Zarifi
,
J.
Javanmardi
,
H.
Hashemi
,
A.
Eslamimanesh
, and
A. H.
Mohammadi
,
Fluid Phase Equilib.
423
,
17
(
2016
).
29.
A.
Phan
,
H. M.
Stoner
,
M.
Stamatakis
,
C. A.
Koh
, and
A.
Striolo
,
J. Colloid Interface Sci.
611
,
421
(
2022
).
30.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
,
J. Am. Chem. Soc.
132
,
11806
(
2010
).
31.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
,
J. Phys. Chem. B
114
,
13796
(
2010
).
32.
J. Q.
Broughton
and
G. H.
Gilmer
,
J. Chem. Phys.
84
,
5759
(
1986
).
33.
J. J.
Hoyt
,
M.
Asta
, and
A.
Karma
,
Phys. Rev. Lett.
86
,
5530
(
2001
).
34.
S.
Angioletti-Uberti
,
M.
Ceriotti
,
P. D.
Lee
, and
M. W.
Finnis
,
Phys. Rev. B
81
,
125416
(
2010
).
35.
L. A.
Fernández
,
V.
Martín-Mayor
,
B.
Seoane
, and
P.
Verrocchio
,
Phys. Rev. Lett.
108
,
165701
(
2012
).
36.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
,
J. Chem. Phys.
141
,
134709
(
2014
).
37.
Z. M.
Aman
and
C. A.
Koh
,
Chem. Soc. Rev.
45
,
1678
(
2016
).
38.
J. M.
Míguez
,
M. M.
Conde
,
J.-P.
Torré
,
F. J.
Blas
,
M. M.
Piñeiro
, and
C.
Vega
,
J. Chem. Phys.
142
,
124505
(
2015
).
39.
J.
Costandy
,
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
,
J. Chem. Phys.
143
,
094506
(
2015
).
40.
M. H.
Waage
,
T. J. H.
Vlugt
, and
S.
Kjelstrup
,
J. Phys. Chem. B
121
,
7336
(
2017
).
41.
J.
Algaba
,
E.
Acuña
,
J. M.
Míguez
,
B.
Mendiboure
,
I. M.
Zerón
, and
F. J.
Blas
,
J. Colloid Interface Sci.
623
,
354
(
2022
).
42.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
,
J. Chem. Phys.
122
,
234511
(
2005
).
43.
J. J.
Potoff
and
J. I.
Siepmann
,
AIChE J.
47
,
1676
(
2001
).
44.
W.
Lechner
and
C.
Dellago
,
J. Chem. Phys.
129
,
114707
(
2008
).
45.
R.
Radhakrishnan
and
B. L.
Trout
,
J. Chem. Phys.
117
,
1786
(
2002
).
46.
S.
Hirai
,
K.
Okazaki
,
Y.
Tabe
, and
K.
Kawamura
,
Energy Convers. Manage.
38
,
S301
(
1997
).
47.
E.
Sanz
,
C.
Vega
,
J. R.
Espinosa
,
R.
Caballero-Bernal
,
J. L. F.
Abascal
, and
C.
Valeriani
,
J. Am. Chem. Soc.
135
,
15008
(
2013
).
48.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press; Clarendon
,
Oxford
,
2017
).
49.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations
, 2nd ed. (
Academic
,
San Diego
,
2002
).
50.
E. G.
Noya
,
C.
Vega
, and
E.
de Miguel
,
J. Chem. Phys.
128
,
154507
(
2008
).
51.
D.
Frenkel
,
Eur. Phys. J. Plus
128
,
10
(
2013
).
52.
J. R.
Espinosa
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
,
J. Chem. Phys.
139
,
144502
(
2013
).
53.
M. A.
Cuendet
and
W. F. V.
Gunsteren
,
J. Chem. Phys.
127
,
184102
(
2007
).
55.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
56.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
57.
J. M.
Míguez
,
M. M.
Piñeiro
,
J.
Algaba
,
B.
Mendiboure
,
J. P.
Torré
, and
F. J.
Blas
,
J. Phys. Chem. B
119
,
14288
(
2015
).
58.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
,
J. Chem. Phys.
142
,
194709
(
2015
).
59.
T. M.
Truskett
,
S.
Torquato
, and
P. G.
Debenedetti
,
Phys. Rev. E
62
,
993
(
2000
).
60.
P.-L.
Chau
and
A. J.
Hardwick
,
Mol. Phys.
93
,
511
(
1998
).
61.
J. S.
van Duijneveldt
and
D.
Frenkel
,
J. Chem. Phys.
96
,
4655
(
1992
).
62.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Phys. Rev. Lett.
75
,
2714
(
1995
).
63.
R. M.
Lynden-Bell
,
J. S.
van Duijneveldt
, and
D.
Frenkel
,
Mol. Phys.
80
,
801
(
1993
).
64.
P.
Rein ten Wolde
,
M. J.
Ruiz‐Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).

Supplementary Material

You do not currently have access to this content.