Wettability of rock surfaces with respect to oil and water, which is characterized by the contact angle, is an important factor that determines the efficacy of enhanced oil recovery operations. Experimental determination of contact angles for oil–water–rock systems is expensive and time-consuming due to the extremely long times needed for the establishment of adsorption equilibrium at the liquid–solid interface. Hence, molecular simulations form an attractive tool for computing contact angles. In this work, we use the cleaving wall technique that was developed previously in our group [R. K. R. Addula and S. N. Punnathanam, J. Chem. Phys. 153, 154504 (2020)] to compute solid–liquid interfacial free energy, which is then combined with Young’s equation to compute the oil–water contact angle on silica surfaces. The silica surface is modeled with the INTERFACE force field that has been developed to accurately reproduce experimental data. We have considered three different surface chemistries of silica, namely, Q2, Q3, and Q4, in this study. Our calculations reveal that while the Q2 and Q3 surfaces are completely wetted by water, the Q4 surface is partially non-wetted by water. All the simulations needed for this calculation can be performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular package. This should facilitate wider adoption of the Young’s equation route to compute contact angles for systems comprised of complex molecules.

2.
P.
Druetta
,
P.
Raffa
, and
F.
Picchioni
,
Appl. Energy
252
,
113480
(
2019
).
3.
L. W.
Lake
,
Enhanced Oil Recovery
(
Prentice-Hall
,
Englewood Cliffs
,
1989
).
4.
T.
Ahmed
,
Reservoir Engineering Handbook
(
Gulf Publishing Company
,
Houston
,
2000
).
5.
L. P.
Dake
,
Fundamentals of Reservoir Engineering
(
Elsevier
,
Amsterdam, The Netherlands
,
1978
).
6.
A.
Satter
,
G. M.
Iqbal
, and
J. L.
Buchwalter
,
Practical Enhanced Reservoir Engineering
(
PennWell Books
,
Tulsa
,
2008
).
7.
O. R.
Wagner
and
R. O.
Leach
,
Trans. AIME
216
,
65
(
1959
).
8.
G.
Javanbakht
,
M.
Sedghi
,
W.
Welch
, and
L.
Goual
,
Langmuir
31
,
5812
(
2015
).
9.
F.
Jiménez-Ángeles
and
A.
Firoozabadi
,
J. Phys. Chem. C
120
,
11910
(
2016
).
10.
A.
Silvestri
,
E.
Ataman
,
A.
Budi
,
S. L. S.
Stipp
,
J. D.
Gale
, and
P.
Raiteri
,
Langmuir
35
,
16669
(
2019
).
11.
J.
Wu
,
Å.
Ervik
,
I.
Snustad
,
S.
Xiao
,
A.
Brunsvold
,
J.
He
, and
Z.
Zhang
,
J. Phys. Chem. C
123
,
443
(
2019
).
12.
E. W.-H.
Sun
and
I. C.
Bourg
,
Langmuir
124
,
25382
(
2020
).
13.
T. T. B.
Le
,
A.
Striolo
, and
D. R.
Cole
,
J. Phys. Chem. C
124
,
18532
(
2020
).
14.
R.
Solc
,
M. H.
Gerzabek
,
H.
Lischka
, and
D.
Tunega
,
Geoderma
169
,
47
(
2011
).
15.
D.
Argyris
,
T.
Ho
,
D. R.
Cole
, and
A.
Striolo
,
J. Phys. Chem. C
115
,
2038
(
2011
).
16.
F.
Taherian
,
V.
Marcon
,
N. F. A.
van der Vegt
, and
F.
Leroy
,
Langmuir
29
,
1457
(
2014
).
17.
N.
Wei
,
C.
Lv
, and
Z.
Xu
,
Langmuir
30
,
3572
(
2014
).
18.
J.
Zhao
,
G.
Yao
, and
D.
Wen
,
Fuel
272
,
117615
(
2020
).
19.
H.
Jiang
,
F.
Müller-Plathe
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
147
,
084708
(
2017
).
20.
H.
Jiang
and
A. J.
Patel
,
Curr. Opin. Chem. Engg.
23
,
130
(
2019
).
21.
J. G.
Kirkwood
and
F. P.
Buff
,
J. Chem. Phys.
17
,
338
(
1949
).
22.
J. Q.
Broughton
and
G. H.
Gilmer
,
J. Chem. Phys.
84
,
5759
(
1986
).
23.
R. L.
Davidchack
and
B. B.
Laird
,
J. Chem. Phys.
118
,
7651
(
2003
).
24.
J. R.
Morris
and
X.
Song
,
J. Chem. Phys.
119
,
3920
(
2003
).
25.
E. M.
Grzelak
and
J. R.
Errington
,
J. Chem. Phys.
128
,
014710
(
2008
).
26.
F.
Leroy
,
D. J. V. A.
dos Santos
, and
F.
Müller-Plathe
,
Macromol. Rapid Commun.
30
,
864
(
2009
).
27.
R.
Benjamin
and
J.
Horbach
,
J. Chem. Phys.
141
,
044715
(
2014
).
28.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
,
J. Chem. Phys.
141
,
134709
(
2014
).
29.
X.
Qi
,
Y.
Zhou
, and
K. A.
Fichthorn
,
J. Chem. Phys.
145
,
194108
(
2016
).
30.
R. K. R.
Addula
and
S. N.
Punnathanam
,
J. Chem. Phys.
153
,
154504
(
2020
).
31.
W.
Guo
and
J. R.
Errington
,
J. Phys. Chem. C
122
,
17309
(
2018
).
32.
W.
Guo
and
J. R.
Errington
,
Langmuir
35
,
6540
(
2019
).
33.
T.
Saito
,
E.
Shoji
,
M.
Kubo
,
T.
Tsukada
,
G.
Kikugawa
, and
D.
Surblys
,
J. Chem. Phys.
154
,
114703
(
2021
).
34.
C.
Bistafa
,
D.
Surblys
,
H.
Kusudo
, and
Y.
Yamaguchi
,
J. Chem. Phys.
155
,
064703
(
2021
).
35.
K.
Jain
,
K. S.
Rane
, and
J. R.
Errington
,
J. Chem. Phys.
150
,
084110
(
2019
).
36.
K.
Jain
,
A. J.
Schultz
, and
J. R.
Errington
,
J. Chem. Phys.
151
,
044103
(
2019
).
37.
R.
Yan
,
W. Z.
Sun
,
S. D.
Ma
,
R. L.
Davidchack
,
N.
Di Pasquale
,
Q. J.
Zhai
,
T.
Jing
, and
H. B.
Dong
,
Comput. Mater. Sci.
155
,
136
(
2018
).
38.
R. L.
Davidchack
and
B. B.
Laird
,
J. Chem. Phys.
108
,
9452
(
1998
).
39.
R. L.
Davidchack
and
B. B.
Laird
,
Phys. Rev. Lett.
85
,
4751
(
2000
).
40.
R.
Handel
,
R. L.
Davidchack
,
J.
Anwar
, and
A.
Brukhno
,
Phys. Rev. Lett.
100
,
036104
(
2008
).
41.
R. L.
Davidchack
,
R.
Handel
,
J.
Anwar
, and
A. V.
Brukhno
,
J. Chem. Theory Comput.
8
,
2383
(
2012
).
42.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
43.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1
,
19
(
2015
).
44.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kalé
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
45.
F. S.
Emami
,
V.
Puddu
,
R. J.
Berry
,
V.
Varshney
,
S. V.
Patwardhan
,
C. C.
Perry
, and
H.
Heinz
,
Chem. Mater.
26
,
2647
(
2014
).
46.
J. G.
Speight
,
R. B.
Long
, and
T. D.
Trowbridge
,
Fuel
63
,
616
(
1984
).
47.
Structures and Dynamics of Asphaltenes
, edited by
O. C.
Mullins
and
E. Y.
Sheu
(
Springer Science+Business Media, LLC
,
1995
).
48.
H. W.
Yarranton
,
H.
Alboudwarej
, and
R.
Jakher
,
Ind. Eng. Chem. Res.
39
,
2916
(
2000
).
49.
A.
Ortega-Rodríguez
,
S. A.
Cruz
,
A.
Gil-Villegas
,
F.
Guevara-Rodríguez
, and
C.
Lira-Galeana
,
Energy Fuels
17
,
1100
(
2003
).
50.
A. N. M.
Carauta
,
P. R.
Seidl
,
E. C. A. N.
Chrisman
,
J. C. G.
Correia
,
P. d. O.
Menechini
,
D. M.
Silva
,
K. Z.
Leal
,
S. M. C.
de Menezes
,
W. F.
de Souza
, and
M. A. G.
Teixeira
,
Energy Fuels
19
,
1245
(
2005
).
51.
T.
Kuznicki
,
J. H.
Masliyah
, and
S.
Bhattacharjee
,
Energy Fuels
22
,
2379
(
2008
).
52.
T. F.
Headen
,
E. S.
Boek
, and
N. T.
Skipper
,
Energy Fuels
23
,
1220
(
2009
).
53.
I. A.
Wiehe
,
Energy Fuels
26
,
4004
(
2012
).
54.
M.
Sedghi
,
L.
Goual
,
W.
Welch
, and
J.
Kubelka
,
J. Phys. Chem. B
117
,
5765
(
2013
).
55.
C.
Jian
,
T.
Tang
, and
S.
Bhattacharjee
,
Energy Fuels
28
,
3604
(
2014
).
56.
L.
Ramírez
,
I.
Moncayo-Riascos
,
F. B.
Cortés
,
C. A.
Franco
, and
R.
Ribadeneira
,
Energy Fuels
35
,
3119
(
2021
).
57.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2569
(
1998
).
58.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
59.
S.
Zhang
,
X.
Lu
,
J.
Wu
,
W.
Tong
,
Q.
Lei
, and
W.
Fang
,
J. Chem. Eng. Data
59
,
860
(
2014
).
60.
B.
Xue
,
D. B.
Harwood
,
J. L.
Chen
, and
J. I.
Siepmann
,
J. Chem. Eng. Data
63
,
4256
(
2018
).
61.
G.
Wiegand
and
E. U.
Franck
,
Ber. Bunsengesellschaft Phys. Chem.
98
,
809
(
1994
).
62.

In order to implement the wall interaction using LAMMPS without modifying it, each site for the wall is split into two: one for repulsive and the other for attractive interaction, respectively.

Supplementary Material

You do not currently have access to this content.