Low-temperature, metastable electrochromism has been used as a tool to assign pigments in Photosystem I (PS I) from Thermosynechococcus vulcanus and both the white light and far-red light (FRL) forms of Chroococcidiopsis thermalis. We find that a minimum of seven pigments is required to satisfactorily model the electrochromism of PS I. Using our model, we provide a short list of candidates for the chlorophyll f pigment in FRL C. thermalis that absorbs at 756 nm, whose identity, to date, has proven to be controversial. Specifically, we propose the linker pigments A40 and B39 and two antenna pigments A26 and B24 as defined by crystal structure 1JB0. The pros and cons of these assignments are discussed, and we propose further experiments to better understand the functioning of FRL C. thermalis.

1.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Blanckwell Science, Ltd.
,
Oxford
,
2002
).
2.
P.
Jordan
,
P.
Fromme
,
H. T.
Witt
,
O.
Klukas
,
W.
Saenger
, and
N.
Krauss
, “
Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution
,”
Nature
411
,
909
917
(
2001
).
3.
T.
Renger
and
E.
Schlodder
, “
Modeling of optical spectra and light harvesting in photosystem I
,” in
Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase
, edited by
J. H.
Golbeck
(
Springer
,
Dordrecht, The Netherlands
,
2006
), pp.
595
610
.
4.
E.
Schlodder
,
V. V.
Shubin
,
E.
El-Mohsnawy
,
M.
Roegner
, and
N. V.
Karapetyan
, “
Steady-state and transient polarized absorption spectroscopy of photosystem I complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus
,”
Biochim. Biophys. Acta
1767
(
6
),
732
741
(
2007
).
5.
H.
Witt
,
E.
Bordignon
,
D.
Carbonera
,
J. P.
Dekker
,
N.
Karapetyan
,
C.
Teutloff
,
A.
Webber
,
W.
Lubitz
, and
E.
Schlodder
, “
Species-specific differences of the spectroscopic properties of P700: Analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii
,”
J. Biol. Chem.
278
(
47
),
46760
46771
(
2003
).
6.
F.
Gan
,
S.
Zhang
,
N. C.
Rockwell
,
S. S.
Martin
,
J. C.
Lagarias
, and
D. A.
Bryant
, “
Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light
,”
Science
345
(
6202
),
1312
1317
(
2014
).
7.
D. J.
Nürnberg
,
J.
Morton
,
S.
Santabarbara
,
A.
Telfer
,
P.
Joliot
,
L. A.
Antonaru
,
A. V.
Ruban
,
T.
Cardona
,
E.
Krausz
,
A.
Boussac
,
A.
Fantuzzi
, and
A. W.
Rutherford
, “
Photochemistry beyond the red limit in chlorophyll f–containing photosystems
,”
Science
360
,
1210
1213
(
2018
).
8.
M.
Kaucikas
,
D.
Nürnberg
,
G.
Dorlhiac
,
A. W.
Rutherford
, and
J. J.
van Thor
, “
Femtosecond visible transient absorption spectroscopy of chlorophyll f-containing photosystem I
,”
Biophys. J.
112
(
2
),
234
249
(
2017
).
9.
N.
Zamzam
,
M.
Kaucikas
,
D. J.
Nürnberg
,
A. W.
Rutherford
, and
J. J.
van Thor
, “
Femtosecond infrared spectroscopy of chlorophyll f-containing photosystem I
,”
Phys. Chem. Chem. Phys.
21
(
3
),
1224
1234
(
2019
).
10.
C. J.
Gisriel
,
G.
Shen
,
M.-Y.
Ho
,
V.
Kurashov
,
D. A.
Flesher
,
J.
Wang
,
W. H.
Armstrong
,
J. H.
Golbeck
,
M. R.
Gunner
,
D. J.
Vinyard
,
R. J.
Debus
,
G. W.
Brudvig
, and
D. A.
Bryant
, “
Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f
,”
J. Biol. Chem.
298
(
1
),
101424
(
2022
).
11.
C.
Gisriel
,
G.
Shen
,
V.
Kurashov
,
M. Y.
Ho
,
S.
Zhang
,
D.
Williams
,
J. H.
Golbeck
,
P.
Fromme
, and
D. A.
Bryant
, “
The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis
,”
Sci. Adv.
6
,
eaay6415
(
2020
).
12.
K.
Kato
,
T.
Shinoda
,
R.
Nagao
,
S.
Akimoto
,
T.
Suzuki
,
N.
Dohmae
,
M.
Chen
,
S. I.
Allakhverdiev
,
J.-R.
Shen
,
F.
Akita
,
N.
Miyazaki
, and
T.
Tomo
, “
Structural basis for the adaptation and function of chlorophyll f in photosystem I
,”
Nat. Commun.
11
(
1
),
238
(
2020
).
13.
C. J.
Gisriel
,
H.-L.
Huang
,
K. M.
Reiss
,
D. A.
Flesher
,
V. S.
Batista
,
D. A.
Bryant
,
G. W.
Brudvig
, and
J.
Wang
, “
Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light
,”
BBA Adv.
1
,
100019
(
2021
).
14.
M.
Tros
,
V.
Mascoli
,
G.
Shen
,
M.-Y.
Ho
,
L.
Bersanini
,
C. J.
Gisriel
,
D. A.
Bryant
, and
R.
Croce
, “
Breaking the red limit: Efficient trapping of long-wavelength excitations in chlorophyll-f-containing photosystem I
,”
Chem
7
(
1
),
155
173
(
2021
).
15.
G.
Hastings
,
H.
Makita
,
N.
Agarwala
,
L.
Rohani
,
G.
Shen
, and
D. A.
Bryant
, “
Fourier transform visible and infrared difference spectroscopy for the study of P700 in photosystem I from Fischerella thermalis PCC 7521 cells grown under white light and far-red light: Evidence that the A−1 cofactor is chlorophyll f
,”
Biochim. Biophys. Acta, Bioenerg.
1860
(
6
),
452
460
(
2019
).
16.
D. A.
Cherepanov
,
I. V.
Shelaev
,
F. E.
Gostev
,
A. V.
Aybush
,
M. D.
Mamedov
,
G.
Shen
,
V. A.
Nadtochenko
,
D. A.
Bryant
,
A. Y.
Semenov
, and
J. H.
Golbeck
, “
Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521
,”
Biochim. Biophys. Acta, Bioenerg.
1861
(
5–6
),
148184
(
2020
).
17.
V.
Mascoli
,
L.
Bersanini
, and
R.
Croce
, “
Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis
,”
Nat. Plants
6
(
8
),
1044
1053
(
2020
).
18.
F. J.
Schmitt
,
Z. Y.
Campbell
,
M. V.
Bui
,
A.
Hüls
,
T.
Tomo
,
M.
Chen
,
E. G.
Maksimov
,
S. I.
Allakhverdiev
, and
T.
Friedrich
, “
Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light
,”
Photosynth. Res.
139
(
1–3
),
185
201
(
2019
).
19.
E.
Schlodder
,
F.
Lendzian
,
J.
Meyer
,
M.
Çetin
,
M.
Brecht
,
T.
Renger
, and
N. V.
Karapetyan
, “
Long-wavelength limit of photochemical energy conversion in photosystem I
,”
J. Am. Chem. Soc.
136
(
10
),
3904
3918
(
2014
).
20.
N.
Cox
,
J. L.
Hughes
,
R.
Steffen
,
P. J.
Smith
,
A. W.
Rutherford
,
R. J.
Pace
, and
E.
Krausz
, “
Identification of the QY excitation of the primary electron acceptor of photosystem II: CD determination of its coupling environment
,”
J. Phys. Chem. B
113
,
12364
12374
(
2009
).
21.
J.
Hall
,
R.
Picorel
,
N.
Cox
,
R.
Purchase
, and
E.
Krausz
, “
New perspectives on photosystem II reaction centres
,”
Aust. J. Chem.
73
,
669
(
2020
).
22.
M.
Judd
,
J.
Morton
,
D.
Nürnberg
,
A.
Fantuzzi
,
A. W.
Rutherford
,
R.
Purchase
,
N.
Cox
, and
E.
Krausz
, “
The primary donor of far-red photosystem II: ChlD1 or PD2?
,”
Biochim. Biophys. Acta, Bioenerg.
1861
(
10
),
148248
(
2020
).
23.
G.
Raszewski
,
B. A.
Diner
,
E.
Schlodder
, and
T.
Renger
, “
Spectroscopic properties of reaction center pigments in photosystem II core complexes: Revision of the multimer model
,”
Biophys. J.
95
(
1
),
105
119
(
2008
).
24.
G.
Raszewski
,
W.
Saenger
, and
T.
Renger
, “
Theory of optical spectra of photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor
,”
Biophys. J.
88
(
2
),
986
998
(
2005
).
25.
J.
Morton
,
M.
Chrysina
,
V. S. J.
Craig
,
F.
Akita
,
Y.
Nakajima
,
W.
Lubitz
,
N.
Cox
,
J.-R.
Shen
, and
E.
Krausz
, “
Structured near-infrared magnetic circular dichroism spectra of the Mn4CaO5 cluster of PSII in T. vulcanus are dominated by Mn(IV) d–d ‘spin-flip’ transitions
,”
Biochim. Biophys. Acta, Bioenerg.
1859
(
2
),
88
98
(
2018
).
26.
E.
Krausz
, “
Selective and differential optical spectroscopies in photosynthesis
,”
Photosynth. Res.
116
(
2–3
),
411
426
(
2013
).
27.
J. L.
Hughes
,
P.
Smith
,
R.
Pace
, and
E.
Krausz
, “
Charge separation in photosystem II core complexes induced by 690–730 nm excitation at 1.7 K
,”
Biochim. Biophys. Acta
1757
(
7
),
841
851
(
2006
).
28.
F.
Müh
,
M.
Plöckinger
, and
T.
Renger
, “
Electrostatic asymmetry in the reaction center of photosystem II
,”
J. Phys. Chem. Lett.
8
(
4
),
850
858
(
2017
).
29.
M.
Byrdin
,
P.
Jordan
,
N.
Krauss
,
P.
Fromme
,
D.
Stehlik
, and
E.
Schlodder
, “
Light harvesting in photosystem I: Modeling based on the 2.5-Å structure of photosystem I from Synechococcus elongatus
,”
Biophys. J.
83
,
433
457
(
2002
).
30.
Y.
Li
,
N.
Scales
,
R. E.
Blankenship
,
R. D.
Willows
, and
M.
Chen
, “
Extinction coefficient for red-shifted chlorophylls: Chlorophyll d and chlorophyll f
,”
Biochim. Biophys. Acta
1817
(
8
),
1292
1298
(
2012
).
31.
A. N.
Webber
and
W.
Lubitz
, “
P700: The primary electron donor of photosystem I
,”
Biochim. Biophys. Acta
1507
,
61
79
(
2001
).
32.
A.
Petrenko
,
A. L.
Maniero
,
J.
van Tol
,
F.
MacMillan
,
Y.
Li
,
L.-C.
Brunel
, and
K.
Redding
, “
A high-field EPR study of P700 in wild-type and mutant photosystem I from Chlamydomonas reinhardtii
,”
Biochemistry
43
,
1781
1786
(
2004
).
33.
L.
Krabben
,
E.
Schlodder
,
R.
Jordan
,
D.
Carbonera
,
G.
Giacometti
,
H.
Lee
,
A. N.
Webber
, and
W.
Lubitz
, “
Influence of the axial ligands on the spectral properties of P700 of photosystem I: A study of site-directed mutants
,”
Biochemistry
39
,
13012
13025
(
2000
).
34.
K.
Saito
and
H.
Ishikita
, “
Cationic state distribution over the P700 chlorophyll pair in photosystem I
,”
Biophys. J.
101
(
8
),
2018
2025
(
2011
).
35.
I. R.
Vassiliev
,
M. L.
Antonkine
, and
J. H.
Golbeck
, “
Iron-sulfur clusters in type I reaction centers
,”
Biochim. Biophys. Acta
1507
,
139
160
(
2001
).
36.
P.
Joliot
and
A.
Joliot
, “
In vivo analysis of the electron transfer within photosystem I: Are the two phylloquinones involved?
,”
Biochemistry
38
,
11130
11136
(
1999
).
37.
J. M.
Hayes
,
P. A.
Lyle
, and
G. J.
Small
, “
A theory for the temperature dependence of hole-burned spectra
,”
J. Phys. Chem.
98
,
7337
7341
(
1994
).

Supplementary Material

You do not currently have access to this content.