Under certain conditions, the dynamics of coarse-grained models of solvated proteins can be described using a Markov state model, which tracks the evolution of populations of configurations. The transition rates among states that appear in the Markov model can be determined by computing the relative entropy of states and their mean first passage times. In this paper, we present an adaptive method to evaluate the configurational entropy and the mean first passage times for linear chain models with discontinuous potentials. The approach is based on event-driven dynamical sampling in a massively parallel architecture. Using the fact that the transition rate matrix can be calculated for any choice of interaction energies at any temperature, it is demonstrated how each state’s energy can be chosen such that the average time to transition between any two states is minimized. The methods are used to analyze the optimization of the folding process of two protein systems: the crambin protein and a model with frustration and misfolding. It is shown that the folding pathways for both systems are comprised of two regimes: first, the rapid establishment of local bonds, followed by the subsequent formation of more distant contacts. The state energies that lead to the most rapid folding encourage multiple pathways, and they either penalize folding pathways through kinetic traps by raising the energies of trapping states or establish an escape route from the trapping states by lowering free energy barriers to other states that rapidly reach the native state.

1.
S. Y.
Joshi
and
S. A.
Deshmukh
,
Mol. Simul.
47
,
786
(
2021
).
2.
S.
Kmiecik
,
D.
Gront
,
M.
Kolinski
,
L.
Wieteska
,
A. E.
Dawid
, and
A.
Kolinski
,
Chem. Rev.
116
,
7898
(
2016
).
3.
S.
Kmiecik
,
M.
Kouza
,
A.
Badaczewska-Dawid
,
A.
Kloczkowski
, and
A.
Kolinski
,
Int. J. Mol. Sci.
19
,
3496
(
2018
).
4.
H.
Taketomi
,
Y.
Ueda
, and
N.
,
Int. J. Pept. Protein Res.
7
,
445
(
1975
).
5.
Y.
Ueda
,
H.
Taketomi
, and
N.
,
Biopolymers
17
,
1531
(
1978
).
6.
N.
and
H.
Taketomi
,
Int. J. Pept. Protein Res.
13
,
235
(
1979
).
7.
N.
and
H.
Abe
,
Biopolymers
20
,
991
(
1981
).
8.
H.
Abe
and
N.
,
Biopolymers
20
,
1013
(
1981
).
9.
S.
Takada
,
Biophys. Physicobiol.
16
,
248
(
2019
).
10.
11.
L.
Yang
,
G.
Song
, and
R. L.
Jernigan
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
12347
(
2009
).
12.
J.
Schofield
,
P.
Inder
, and
R.
Kapral
,
J. Chem. Phys.
136
,
205101
(
2012
).
13.
M.
Orozco
,
Chem. Soc. Rev.
43
,
5051
(
2014
).
14.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
,
Science
334
,
517
(
2011
).
15.
M.
Karplus
and
D. L.
Weaver
,
Protein Sci.
3
,
650
(
1994
).
16.
A. R.
Fersht
,
Curr. Opin. Struct. Biol.
7
,
3
(
1997
).
17.
K. A.
Dill
,
S. B.
Ozkan
,
M. S.
Shell
, and
T. R.
Weikl
,
Annu. Rev. Biophys.
37
,
289
(
2008
).
18.
P. G.
Wolynes
,
J. N.
Onuchic
, and
D.
Thirumalai
,
Science
267
,
1619
(
1995
).
19.
P. E.
Leopold
,
M.
Montal
, and
J. N.
Onuchic
,
Proc. Natl. Acad. Sci. U. S. A.
89
,
8721
(
1992
).
20.
M.
Krishna
,
L.
Hoang
,
Y.
Lin
, and
S. W.
Englander
,
Methods
34
,
51
(
2004
).
21.
M. M. G.
Krishna
,
H.
Maity
,
J. N.
Rumbley
,
Y.
Lin
, and
S. W.
Englander
,
J. Mol. Biol.
359
,
1410
(
2006
).
22.
H.
Maity
,
M.
Maity
,
M. M. G.
Krishna
,
L.
Mayne
, and
S. W.
Englander
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
4741
(
2005
).
23.
W.
Hu
,
Z.-Y.
Kan
,
L.
Mayne
, and
S. W.
Englander
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
3809
(
2016
).
24.
Y.
Bai
,
T. R.
Sosnick
,
L.
Mayne
, and
S. W.
Englander
,
Science
269
,
192
(
1995
).
25.
W.
Hu
,
B. T.
Walters
,
Z.-Y.
Kan
,
L.
Mayne
,
L. E.
Rosen
,
S.
Marqusee
, and
S. W.
Englander
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
7684
(
2013
).
26.
B.
Kuhlman
,
G.
Dantas
,
G. C.
Ireton
,
G.
Varani
,
B. L.
Stoddard
, and
D.
Baker
,
Science
302
,
1364
(
2003
).
27.
F.
Richter
and
D.
Baker
, in
Synthetic Biology
, edited by
H.
Zhao
(
Academic Press
,
Boston
,
2013
), pp.
101
122
.
28.
Z.
Chen
,
M. C.
Johnson
,
J.
Chen
,
M. J.
Bick
,
S. E.
Boyken
,
B.
Lin
,
J. J.
De Yoreo
,
J. M.
Kollman
,
D.
Baker
, and
F.
DiMaio
,
J. Am. Chem. Soc.
141
,
8891
(
2019
).
29.
W.
Zhou
,
T.
Šmidlehner
, and
R.
Jerala
,
FEBS Lett.
594
,
2199
(
2020
).
30.
M. H.
Cordes
,
A. R.
Davidson
, and
R. T.
Sauer
,
Curr. Opin. Struct. Biol.
6
,
3
(
1996
).
31.
W. P.
Russ
,
M.
Figliuzzi
,
C.
Stocker
,
P.
Barrat-Charlaix
,
M.
Socolich
,
P.
Kast
,
D.
Hilvert
,
R.
Monasson
,
S.
Cocco
,
M.
Weigt
, and
R.
Ranganathan
,
Science
369
,
440
(
2020
).
32.
A.
Hawkins-Hooker
,
F.
Depardieu
,
S.
Baur
,
G.
Couairon
,
A.
Chen
, and
D.
Bikard
,
PLoS Comput. Biol.
17
,
e1008736
(
2021
).
33.
J.
Jumper
,
R.
Evans
,
A.
Pritzel
,
T.
Green
,
M.
Figurnov
,
O.
Ronneberger
,
K.
Tunyasuvunakool
,
R.
Bates
,
A.
Žídek
,
A.
Potapenko
,
A.
Bridgland
,
C.
Meyer
,
S. A. A.
Kohl
,
A. J.
Ballard
,
A.
Cowie
,
B.
Romera-Paredes
,
S.
Nikolov
,
R.
Jain
,
J.
Adler
,
T.
Back
,
S.
Petersen
,
D.
Reiman
,
E.
Clancy
,
M.
Zielinski
,
M.
Steinegger
,
M.
Pacholska
,
T.
Berghammer
,
S.
Bodenstein
,
D.
Silver
,
O.
Vinyals
,
A. W.
Senior
,
K.
Kavukcuoglu
,
P.
Kohli
, and
D.
Hassabis
,
Nature
596
,
583
(
2021
).
34.
J.
Echave
and
C. O.
Wilke
,
Annu. Rev. Biophys.
46
,
85
(
2017
).
35.
X.
Ding
,
Z.
Zou
, and
C. L.
Brooks
 III
,
Nat. Commun.
10
,
5644
(
2019
).
36.
K. A.
Dill
,
Curr. Opin. Struct. Biol.
3
,
99
(
1993
).
37.
E. I.
Shakhnovich
and
A. M.
Gutin
,
Proc. Natl. Acad. Sci. U. S. A.
90
,
7195
(
1993
).
38.
H.
Jacquin
,
A.
Gilson
,
E.
Shakhnovich
,
S.
Cocco
, and
R.
Monasson
,
PLoS Comput. Biol.
12
,
e1004889
(
2016
).
39.
40.
F.
Morcos
,
N. P.
Schafer
,
R. R.
Cheng
,
J. N.
Onuchic
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
12408
(
2014
).
41.
Y.
Zhou
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U. S. A.
94
,
14429
(
1997
).
42.
Y.
Zhou
,
M.
Karplus
,
J. M.
Wichert
, and
C. K.
Hall
,
J. Chem. Phys.
107
,
10691
(
1997
).
43.
Y.
Zhou
and
M.
Karplus
,
J. Mol. Biol.
293
,
917
(
1999
).
44.
H. B.
Movahed
,
R.
van Zon
, and
J.
Schofield
,
J. Chem. Phys.
136
,
245103
(
2012
).
45.
J.
Schofield
and
H.
Bayat
,
J. Chem. Phys.
141
,
095101
(
2014
).
46.
R.
van Zon
and
J.
Schofield
,
J. Chem. Phys.
132
,
154110
(
2010
).
47.
J.
Schofield
,
J. Phys. Chem. B
121
,
6847
(
2017
).
48.
J.
Schofield
and
M. A.
Ratner
,
J. Chem. Phys.
109
,
9177
(
1998
).
49.
P. H.
Verdier
and
W. H.
Stockmayer
,
J. Chem. Phys.
36
,
227
(
1962
).
50.
S. K.
Kumar
,
M.
Vacatello
, and
D. Y.
Yoon
,
J. Chem. Phys.
89
,
5206
(
1988
).
51.
J. I.
Siepmann
and
D.
Frenkel
,
Mol. Phys.
75
,
59
(
1992
).
52.
D.
Frenkel
,
G. C. A. M.
Mooij
, and
B.
Smit
,
J. Phys.: Condens. Matter
4
,
3053
(
1992
).
53.
D.
Rezende
and
S.
Mohamed
, in
Proceedings of the 32nd International Conference on Machine Learning, PMLR ’15
, edited by
F.
Bach
and
D.
Blei
(
Proceedings of Machine Learning Research
,
Lille, France
,
2015
), Vol. 37, p.
1530
.
54.
S.
Duane
,
A. D.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
,
Phys. Lett. B
195
,
216
(
1987
).
55.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
).
56.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
57.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
58.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
,
020603
(
2008
).
59.
S.
Marsili
,
A.
Barducci
,
R.
Chelli
,
P.
Procacci
, and
V.
Schettino
,
J. Phys. Chem. B
110
,
14011
(
2006
).
60.
G.
Fort
,
E.
Moulines
, and
P.
Priouret
,
Ann. Stat.
39
,
3262
(
2012
).
61.
G.
Fort
,
B.
Jourdain
,
T.
Lelièvre
, and
G.
Stoltz
,
Stat. Comput.
27
,
147
(
2017
).
62.
P. J.
Smith
,
D. S.
Rae
,
R. W.
Manderscheid
, and
S.
Silbergeld
,
J. Am. Stat. Assoc.
76
,
737
(
1981
).
63.
G.
Marsaglia
,
W. W.
Tsang
, and
J.
Wang
,
J. Stat. Software
8
,
1
(
2003
).
64.
65.
W. L.
May
and
W. D.
Johnson
,
J. Stat. Software
5
,
1
(
2000
).
66.
C. J.
Geyer
, “
Markov chain Monte Carlo maximum likelihood
,” in
Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface
(
Interface Foundation of North America
,
1991
), pp.
156
163
.
67.
C. J.
Geyer
and
E. A.
Thompson
,
J. Am. Stat. Assoc.
90
,
909
(
1995
).
68.
R. M.
Neal
,
Stat. Comput.
6
,
353
(
1996
).
69.
S. B.
Opps
and
J.
Schofield
,
Phys. Rev. E
63
,
056701
(
2001
).
70.
D.
Sindhikara
,
Y.
Meng
, and
A. E.
Roitberg
,
J. Chem. Phys.
128
,
024103
(
2008
).
71.
T.
Vogel
,
Y. W.
Li
,
T.
Wüst
, and
D. P.
Landau
,
Phys. Rev. Lett.
110
,
210603
(
2013
).
72.
F.
Moreno
,
S.
Davis
, and
J.
Peralta
,
Comput. Phys. Commun.
274
,
108283
(
2022
).
73.
L.
Bornn
,
P. E.
Jacob
,
P.
Del Moral
, and
A.
Doucet
,
J. Comput. Graph. Stat.
22
,
749
(
2013
).
74.
V.
Elvira
,
L.
Martino
,
D.
Luengo
, and
M. F.
Bugallo
,
Signal Process.
131
,
77
(
2017
).
75.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North Holland
,
2007
).
76.
L. J. S.
Allen
,
An Introduction to Stochastic Processes With Applications to Biology
(
Prentice-Hall
,
Upper Saddle River, NJ
,
2003
).
77.
C. D.
Meyer
,
SIAM Rev.
31
,
240
(
1989
).
78.
M.
von Kleist
,
C.
Schütte
, and
W.
Zhang
,
J. Stat. Phys.
170
,
809
(
2018
).
79.
D. J.
Sharpe
and
D. J.
Wales
,
Phys. Rev. E
104
,
015301
(
2021
).
80.
L.-Y.
Tseng
and
C.
Chen
, in
2008 IEEE Congress on Evolutionary Computation
(
IEEE World Congress on Computational Intelligence
,
Hong Kong
,
2008
), p.
3052
.
81.
T.
Liao
,
M.
Montes de Oca
,
D.
Aydin
,
T.
Stützle
, and
M.
Dorigo
, in
Genetic and Evolutionary Computation Conference, GECCO ’11
(
Association for Computing Machinery
,
2011
), p.
125
.
82.
U.
Kumar
,
Jayadeva
, and
S.
Somit
, in
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15
(
Association for Computing Machinery
,
2015
), p.
33
.
83.
M.
Ormö
,
A. B.
Cubitt
,
K.
Kallio
,
L. A.
Gross
,
R. Y.
Tsien
, and
S. J.
Remington
, “
Crystal structure of the Aequorea victoria green fluorescent protein
,”
Science
273
,
1392
1395
(
1996
).
84.
C.
Jelsch
,
M. M.
Teeter
,
V.
Lamzin
,
V.
Pichon-Pesme
,
R. H.
Blessing
, and
C.
Lecomte
,
Proc. Natl. Acad. Sci. U. S. A.
97
,
3171
(
2000
).
85.
A.
Schmidt
,
M.
Teeter
,
E.
Weckert
, and
V. S.
Lamzin
,
Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun.
67
,
424
(
2011
).
86.
O. M.
Becker
and
M.
Karplus
,
J. Chem. Phys.
106
,
1495
(
1997
).
87.
D.
Wales
,
Energy Landscapes: Applications to Clusters, Biomolecules and Glasses
, Cambridge Molecular Science (
Cambridge University Press
,
Cambridge
,
2004
).
88.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases
(
Cambridge University Press
,
1990
).
89.
V.
Muñoz
and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U. S. A.
96
,
11311
(
1999
).
90.
K. W.
Plaxco
,
K. T.
Simons
, and
D.
Baker
,
J. Mol. Biol.
277
,
985
(
1998
).
91.
A. R.
Dinner
and
M.
Karplus
,
Nat. Struct. Biol.
8
,
21
(
2001
).
92.
R.
Iftimie
,
D.
Salahub
,
D.
Wei
, and
J.
Schofield
,
J. Chem. Phys.
113
,
4852
(
2000
).
You do not currently have access to this content.